
16 Limites et continuité des fonctions
Dans l’ensemble de ce chapitre, les lettres D et E désigneront des parties quelconques de R.
À l’instar des suites, la notion de limite pour les fonctions repose sur celle de voisinage, qui a été introduite à la

définition 24 du chapitre 9.

1 Limite d’une fonction

1.1 Limite d’une fonction en un point

Soit f : D ÝÑ R une fonction, a P R adhérent à D et ℓ P R. On dit que f admet ℓ pour limite en a lorsque :

pour tout voisinage Vℓ de ℓ, il existe un voisinage Va de a tel que : @x P D X Va, fpxq P Vℓ.

Définition 1 – Limite d’une fonction en un point

Ainsi f admet ℓ pour limite en a lorsque fpxq reste aussi proche de ℓ que souhaité, à condition que x soit
suffisamment proche de a, ce que nous illustrons par les dessins ci-dessous pour diverses situations.

x

y

ℓ

@Vℓ

a
DVa

lim
a

f “ ℓ, avec ℓ P R et a P R

1 @V`8

DV`8

lim
`8

f “ `8

2
y

ℓ

@Vℓ

DV`8

lim
`8

f “ ℓ avec ℓ P R

3

x

@V`8

a
DVa

lim
a

f “ `8 avec a P R

4

x

y

ℓ

@Vℓ

a
DVa

lim
a

f “ ℓ avec ℓ P R et a P R

5

x

@V`8

a
DVa

lim
a

f “ `8 avec a P R

6

Remarque 2 Les dessins ⑤ et ⑥ correspondent au cas où D est une réunion d’intervalles et où a est à la jonction
de deux de ces intervalles sans appartenir au domaine de définition. La limite en un tel a, lorsqu’elle existe, peut être
finie ou infinie.

Soit f : D ÝÑ R une fonction et a P R adhérent à D.
(i) Si f possède une limite en a, elle est unique et notée lim

a
f ou lim

xÑa
fpxq.

Pour tout ℓ P R, la relation lim
a

f “ ℓ est aussi notée f ÝÑ
a

ℓ ou fpxq ÝÑ
xÑa

ℓ.

(ii) Si a P D et si f possède une limite en a, alors lim
a

f “ fpaq (dessin ①).

Théorème 3 – Unicité de la limite

Démonstration. Cf. annexe A. ■
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2 Limites et continuité des fonctions

La traduction du point (ii) est la suivante.

f est définie en a
et lim

a
f “ fpaq.

fpaq

a

fpaq

a

f est définie en a mais
lim
a

f n’existe pas.
Nous verrons toutefois
que lim

a´
f “ lim

a`
f .

La définition précédente de la limite d’une fonction en un point se décline sous forme d’assertions quantifiées, selon
le caractère fini ou infini de a et de ℓ.

Soit f : D ÝÑ R une fonction, a P R adhérent à D et ℓ P R.

• Cas où ℓ P R et a P R :
lim
a

f “ ℓ ðñ @ε ą 0, Dη ą 0, @x P D, |x ´ a| ă η ùñ |fpxq ´ ℓ| ă ε.

• Cas où ℓ “ `8 et a “ `8 :
lim
`8

f “ `8 ðñ @A ą 0, DB ą 0, @x P D, x ą B ùñ fpxq ą A.

• Cas où ℓ “ ´8 et a “ `8 :
lim
`8

f “ ´8 ðñ @A ă 0, DB ą 0, @x P D, x ą B ùñ fpxq ă A.

• Cas où ℓ “ `8 et a “ ´8 :
lim
´8

f “ `8 ðñ @A ą 0, DB ă 0, @x P D, x ă B ùñ fpxq ą A.

• Cas où ℓ “ ´8 et a “ ´8 :
lim
´8

f “ ´8 ðñ @A ă 0, DB ă 0, @x P D, x ă B ùñ fpxq ă A.

• Cas où ℓ P R et a “ `8 :
lim
`8

f “ ℓ ðñ @ε ą 0, DB ą 0, @x P D, x ą B ùñ |fpxq ´ ℓ| ă ε.

• Cas où ℓ P R et a “ ´8 :
lim
´8

f “ ℓ ðñ @ε ą 0, DB ă 0, @x P D, x ă B ùñ |fpxq ´ ℓ| ă ε.

• Cas où ℓ “ `8 et a P R,a R D :
lim
a

f “ `8 ðñ @A ą 0, Dη ą 0, @x P D, |x ´ a| ă η ùñ fpxq ą A.

• Cas où ℓ “ ´8 et a P R,a R D :
lim
a

f “ ´8 ðñ @A ă 0, Dη ą 0, @x P D, |x ´ a| ă η ùñ fpxq ă A.

Définition 4 – Les 9 versions de limites

Remarque 5 À l’instar des définitions données pour les suites, on peut remplacer dans les définitions précédentes les
inégalités strictes des implications par des inégalités larges.

Exemple 6 lim
xÑ`8

1
?
x

“ 0.

En effet, nous devons établir que : @ε ą 0, DA ą 0, @x P R˚
`, x ą A ùñ

∣∣∣ 1?
x

´ 0
∣∣∣ ă ε.

Soit ε ą 0. Pour tout x P R˚
`, ∣∣∣∣ 1

?
x

´ 0

∣∣∣∣ “
1

?
x

et
1

?
x

ă ε ðñ
?
x ą

1

ε
ðñ x ą

1

ε2
.

Posons alors A “ 1
ε2

. D’après ce qui précède : @x P R˚
`, x ą A ùñ

∣∣∣ 1?
x

´ 0
∣∣∣ ă ε.

Le résultat qui suit est l’analogue de celui concernant les suites convergentes.

Soit f : D ÝÑ R une fonction et a P R adhérent à D. Si f possède une limite finie en a, alors f est bornée au
voisinage de a.

Théorème 7 – Limite finie et caractère localement bornée

Démonstration. Par hypothèse, il existe un voisinage Va de a sur lequel |fpxq ´ ℓ| ă 1. En particulier,

@x P D X Va, |fpxq| “ |fpxq ´ ℓ ` ℓ| ď |fpxq ´ ℓ| ` |ℓ| ď |ℓ| ` 1,

ce qui établit que f est bornée sur D X Va. ■
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Limites et continuité des fonctions 3

1.2 Limite d’une fonction à gauche/à droite en un point

Soit f : D ÝÑ R une fonction, a P R adhérent à D et ℓ P R. On suppose f définie au voisinage de a à gauche/à
droite.
• On dit que f admet ℓ pour limite à gauche en a lorsque f |DXs´8,ar admet ℓ pour limite en a. En tant que

limite, la limite de f en a à gauche, si elle existe, est unique et notée lim
a´

f , lim
xÑa´

fpxq ou lim
xÑa
xăa

fpxq.
Plus concrètement, lim

a´
f “ ℓ lorsque

✕ Cas où ℓ P R. @ε ą 0, Dη ą 0, @x P D, a ´ η ă x ă a ùñ |fpxq ´ ℓ| ă ε.
✕ Cas où ℓ “ `8. @A ą 0, Dη ą 0, @x P D, a ´ η ă x ă a ùñ fpxq ą A.
✕ Cas où ℓ “ ´8. @A ă 0, Dη ą 0, @x P D, a ´ η ă x ă a ùñ fpxq ă A.

• On définit de même la notion de limite à droite en a en considérant la restriction f |DXsa,`8r. Si elle existe,
cette limite est notée lim

a`
f , lim

xÑa`
fpxq ou lim

xÑa
xąa

fpxq.

Définition-théorème 8 – Limite d’une fonction à gauche/à droite en un point

Exemple 9 Cette notion s’illustre aisément avec la très classique fonc-

tion inverse f : R˚ ÝÑ R˚, x ÞÝÑ
1

x
, pour laquelle

lim
0´

f “ ´8 et lim
0`

f “ `8.

Notamment la fonction inverse n’admet pas de limite en 0, dans la
mesure où ses limites à gauche et à droite en 0 ne coïncident pas.

x

y

O

y “
1

x

Soit f : D ÝÑ R une fonction, a P R adhérent à D et ℓ P R. On suppose f définie au voisinage de a à gauche et
à droite.

(i) Si a P D, on a l’équivalence lim
a

f “ ℓ ðñ lim
a´

f “ lim
a`

f “ ℓ et ℓ “ fpaq.

(ii) Si a R D, on a l’équivalence lim
a

f “ ℓ ðñ lim
a´

f “ lim
a`

f “ ℓ.

Théorème 10 – Caractérisation de la limite via les limites à gauche/à droite

Démonstration. Cf. annexe A. ■

Pour saisir la nécessité de la condition « et ℓ “ fpaq » du cas (i), il suffit d’observer les deux figures qui suivent le
théorème 3.

Exemple 11 Soit f la fonction définie sur R par fpxq “

"

ex si x ě 0,
1 ´ x si x ă 0.

Alors lim
0

f “ 1.

En effet, lim
0´

f “ lim
xÑ0´

p1 ´ xq “ 1, lim
0`

f “ lim
xÑ0`

ex “ 1 et fp0q “ e0 “ 1.

2 Manipulation des limites
La base du calcul des limites repose sur la connaissance des limites des fonctions usuelles (rappelées au chapitre 5),

leurs combinaisons par opérations et les résultats de croissances comparées entre les fonctions logarithmes, puissances
et exponentielles (également rappelés au chapitre 5).

Les résultats des deux paragraphes suivants concernant les limites par opérations et en lien avec les inégalités
s’énoncent de façon analogues, lorsque cela a un sens, pour des limites à gauche ou à droite.

2.1 Opérations sur les limites

Soit f et g deux fonctions et a P R tels que lim
a

f et lim
a

g existent. Dans ce paragraphe, ℓ, ℓ1 désigneront deux
réels. Les tableaux ci-dessous énoncent les résultats concernant les éventuelles limites en a de la somme f ` g, du
produit fg et du quotient f{g. Précisément, les cas d’indétermination, i.e. ceux pour lesquels il n’est pas possible de
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4 Limites et continuité des fonctions

conclure a priori, sont indiqués par ? ? ?. On observera que ces résultats sont totalement similaires à ceux énoncés pour
les suites ! On pourra d’ailleurs s’inspirer des démonstrations données pour les suites pour établir les règles ci-après.

Somme

lim
a

f ℓ ℓ
ou `8

ℓ
ou ´8

`8

lim
a

g ℓ1 `8 ´8 ´8

lim
a

pf ` gq ℓ ` ℓ1 `8 ´8 ? ? ?

Produit

lim
a

f ℓ ℓ ‰ 0 ou 8 0

lim
a

g ℓ1 8 8

lim
a

pfgq ℓℓ1
8

` règle des signes ? ? ?

Quotient

lim
a

f ℓ 8 ℓ 8
ℓ ‰ 0
ou 8

ℓ ou 8

lim
a

g ℓ1 ‰ 0 ℓ1 ‰ 0 8 8 0` ou 0´ 0

lim
a

f

g

ℓ

ℓ1

8

` règle
des signes

0 ? ? ?
8

` règle
des signes

? ? ?

Terminons les opérations sur les limites avec leur composition.

Soit f : D ÝÑ E et g : E ÝÑ R deux fonctions, a P R adhérent à D, b P R adhérent à E et c P R.

Si lim
a

f “ b et lim
b

g “ c, alors lim
a

g ˝ f “ c.

Théorème 12 – Composition de limites

Démonstration. Soit Vc un voisinage de c. Par hypothèse sur g, il existe un voisinage Vb de b tel que, pour tout x P Vb X E,
gpxq P Vc. Par hypothèse sur f , il existe alors un voisinage Va de a tel que, pour tout x P Va X D, fpxq P Vb. Par conséquent,
pour tout x P Va X D, fpxq P Vb X E et donc gpfpxqq P Vc, d’où la conclusion. ■

Exemple 13 lim
xÑ`8

ln

˜

e´2x `1

pe´x `1q
2

¸

“ 0.

2.2 Limites et relation d’ordre

Soit f : D ÝÑ R une fonction, a P R adhérent à D et m,M P R.

(i) Si lim
a

f ă M , alors f ă M au voisinage de a. (ii) Si lim
a

f ą m, alors f ą m au voisinage de a.

Théorème 14 – Limites et inégalités strictes

Démonstration. Cf. annexe A. ■

Soit f, g : D ÝÑ R deux fonctions et a P R adhérent à D. On suppose que f et g ont des limites finies en a.

Si f ď g au voisinage de a, alors lim
a

f ď lim
a

g.

Ce résultat est le plus souvent utilisé lorsque l’une des deux fonctions est constante.

Théorème 15 – Limites et inégalités larges

Démonstration. Raisonnons par l’absurde en supposant que lim
a

pg ´ fq ă 0. Le théorème précédent affirme alors que g ´ f ă 0

au voisinage de a, contradiction ! ■
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Limites et continuité des fonctions 5

Attention ! Le résultat précédent est faux avec des inégalités strictes !
Par exemple, ex ą 0, pour tout x P R, mais lim

xÑ´8
ex “ 0.

On retiendra que Seules les inégalités larges sont conservées lors d’un passage à la limite.

2.3 Caractérisation séquentielle de la limite d’une fonction
Le résultat suivant généralise le théorème de composition par une fonction pour les limites de suites (théorème 23

du chapitre 15).

Soit f : D ÝÑ R une fonction, a P R adhérent à D et ℓ P R. Les assertions suivantes sont équivalentes
(i) lim

a
f “ ℓ.

(ii) Pour toute suite punqnPN de limite a à valeurs dans D, la suite pfpunqqnPN a pour limite ℓ.

Théorème 16 – Caractérisation séquentielle de la limite d’une fonction

Démonstration. Cf. annexe A. ■

✎ En pratique ✎ Ce résultat est souvent utilisé pour montrer qu’une fonction f n’admet pas de limite en a. Il
suffit pour cela d’exhiber une suite convergeant vers a dont l’image par f ne converge pas, ou deux suites convergeant
vers a dont les images par f ont des limites distinctes.

Exemple 17 La fonction sinus n’a pas de limite en `8.

En effet, lim
nÑ`8

nπ “ lim
nÑ`8

´

2nπ `
π

2

¯

“ `8, mais lim
nÑ`8

“0
hkkkikkkj

sinpnπq “ 0 ‰ 1 “ lim
nÑ`8

“1
hkkkkkkkkikkkkkkkkj

sin
´

2nπ `
π

2

¯

.

3 Théorèmes d’existence de limite
Les résultats précédents permettent seulement de manipuler des limites dont on connait a priori l’existence. Les

théorèmes qui suivent énoncent justement des conditions suffisantes pour établir l’existence d’une limite.

3.1 Théorème d’encadrement/minoration/majoration

Soit f : D ÝÑ R, m : D ÝÑ R et M : D ÝÑ R trois fonctions, a P R adhérent à D et ℓ P R.
• Théorème d’encadrement. Si lim

xÑa
mpxq “ lim

xÑa
Mpxq “ ℓ et si m ď f ď M au voisinage de a, alors lim

a
f

existe et vaut ℓ.
• Théorème de minoration. Si lim

xÑa
mpxq “ `8 et si f ě m au voisinage de a, alors lim

a
f existe et vaut `8.

• Théorème de majoration. Si lim
xÑa

Mpxq “ ´8 et si f ď M au voisinage de a, alors lim
a

f existe et vaut ´8.

Théorème 18

Démonstration. Cf. annexe A. ■

Attention ! Comme pour les suites, on veillera à ne pas confondre le théorème d’encadrement avec le
théorème de passage à la limite dans les inégalités.

Le théorème d’encadrement est souvent utilisé sous l’une des formes suivantes, comme nous l’avions déjà souligné
pour les suites.

Soit f : D ÝÑ R et ε : D ÝÑ R deux fonctions, a P R adhérent à D et ℓ P R. S’il existe un voisinage V de a tel
que, pour tout x P V X D, |fpxq ´ ℓ| ď εpxq et si lim

xÑa
εpxq “ 0, alors lim

xÑa
fpxq “ ℓ.

Corollaire 19 – Théorème d’encadrement bis

Démonstration. Exercice. ■
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6 Limites et continuité des fonctions

Soit f, ε : D ÝÑ R deux fonctions et a P R adhérent à D. Si f est bornée au voisinage de a et si lim
xÑa

εpxq “ 0,
alors lim

xÑa
εpxqfpxq “ 0.

Corollaire 20 – Produit d’une fonction bornée et d’une fonction de limite nulle

Démonstration. Exercice. ■

3.2 Théorème de la limite monotone

Soit a P R, b P R Y t`8u, avec a ă b, et f : ra , br ÝÑ R une fonction croissante.
(i) La limite lim

a`
f existe et est finie. Précisément, fpaq ď lim

a`
f .

(ii) Pour tout c P sa , br, les limites lim
c´

f et lim
c`

f existent et sont finies. Précisément, lim
c´

f ď fpcq ď lim
c`

f .

(iii) La limite lim
b

f existe et est soit finie (si f est majorée au voisinage de b), soit égale à `8 (sinon).

On dispose de résultats analogues pour les formes d’intervalles autres que ra , br ainsi que pour les fonctions
décroissantes.

Théorème 21 – Théorème de la limite monotone

Démonstration. ... ■

En résumé :

Si f est monotone, elle possède des limites à gauche et à droite en tout point où cela peut avoir un sens.

4 Continuité d’une fonction

4.1 Définition
D’un point de vue qualitatif, une fonction est continue sur un intervalle lorsque l’on peut tracer sa courbe repré-

sentative sans lever le crayon, autrement dit lorsque sa courbe représentative est d’un seul morceau. Ce point de vue
graphique traduit l’idée que, pour tout point a de l’intervalle de définition, lorsque l’abscisse x se rapproche de a, par
la droite ou par la gauche, fpxq se rapproche de fpaq.

Dans l’ensemble de cette section, I désigne un intervalle de R contenant au moins deux points.

Soit f : I ÝÑ R une fonction et a P I.
• La fonction f est dite continue en a lorsque lim

a
f existe. Le cas échéant, lim

a
f “ fpaq, f étant définie en a.

La continuité de f en a s’exprime donc par :

@ε ą 0, Dη ą 0, @x P I, |x ´ a| ă η ùñ |fpxq ´ fpaq| ă ε.

x

y

fpaq

a

f est continue en a

x

y

fpaq

a

f n’est pas continue en a

x

y

fpaq

a

f n’est pas continue en a

• La fonction f définie sur I est dite continue sur I lorsqu’elle est continue en tout point de I.
On note C pI,Rq (ou C 0pI,Rq) l’ensemble des fonctions continues sur I à valeurs réelles.

Définition 22 – Continuité
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Limites et continuité des fonctions 7

Exemple 23 La fonction valeur absolue |¨| est continue sur R.
En effet, pour tout a P R, montrons que |¨| est continue en a. Soit ε ą 0. Pour tout x P R, ||x| ´ |a|| ď |x ´ a|, d’après l’inégalité
triangulaire, ainsi pour η “ ε

@x P R, |x ´ a| ă η ùñ ||x| ´ |a|| ă ε.

Remarque 24
• Pour évoquer la continuité d’une fonction f en a, il est nécessaire que f soit définie en a.
• Une subtilité. Soit f : I ÝÑ R et J un intervalle inclus dans I. Si f est continue en tout point de J , alors la

restriction f |J est continue sur J . En revanche, la réciproque de cet énoncé est fausse. Par exemple, la restriction
de la fonction indicatrice 1r0,`8r à r0 ,`8r est continue sur r0 ,`8r, alors que la fonction 1r0,`8r définie sur R
n’est pas continue en 0.

Soit f : I ÝÑ R une fonction et a P I. On suppose f définie au voisinage de a à gauche et à droite.
• La fonction f est dite continue à gauche en a lorsque f |IXs´8,as est continue en a, i.e. lorsque lim

a´
f “ fpaq.

• La fonction f est dite continue à droite en a lorsque f |IXra,`8r est continue en a, i.e. lorsque lim
a`

f “ fpaq.

f est continue en a
à gauche,

mais pas à droite.
x

y

fpaq

a x

y

fpaq

a

f est continue en a
à droite,
mais pas à gauche.

Définition 25 – Continuité à gauche/à droite en un point

Le résultat suivant est la version « continuité » du résultat analogue sur les limites d’une fonction (cf. théorème 10).

Soit f : I ÝÑ R une fonction et a P I. On suppose f définie au voisinage de a à gauche et à droite. La fonction
f est continue en a si et seulement si elle est continue à gauche et à droite en a.

Théorème 26 – Caractérisation de la continuité à l’aide des continuités à gauche/à droite

Exemple 27 La fonction partie entière t¨u est continue en tout point non entier, mais
seulement continue à droite en tout point entier.
En effet, examinons la continuité en un point entier n P Z. Pour tout x P rn , n ` 1r, txu “ n,
ainsi lim

xÑn`
txu “ n “ tnu et t¨u est donc continue à droite en n.

Au contraire, pour tout x P rn ´ 1 , nr, txu “ n ´ 1, ainsi lim
xÑn´

txu “ n ´ 1 ‰ n “ tnu et t¨u n’est

donc pas continue à gauche en n.

x

y

y “ txu

4.2 Prolongement par continuité en un point

Soit a P I XR et f : Iztau ÝÑ R une fonction (non définie en
a donc).
La fonction f est dite prolongeable par continuité en a lorsque
lim
a

f existe et est finie. Le prolongement f de f obtenu en

posant fpaq “ lim
a

f est alors continue en a et appelé prolon-
gement par continuité en a de la fonction f .

a

y “ fpxq

fpaq

a

y “ fpxq

Définition-théorème 28 – Prolongement par continuité en un point

Démonstration. Il s’agit de montrer que f est continue en a, i.e. lim
a

f “ fpaq. Puisque, par définition, f et f coïncident sur

Iztau, l’égalité lim
a

f “ fpaq s’écrit :

@ε ą 0, Dη ą 0, @x P Iztau, |x ´ a| ă η ùñ
∣∣fpxq ´ fpaq

∣∣ ă ε.

Or f est aussi définie en a et on peut évidemment remplacer Iztau par I dans l’assertion précédente. ■
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8 Limites et continuité des fonctions

Remarque 29 On écrit souvent « Prolongeons f par continuité en posant fpaq “ lim
a

f » et l’on note encore f le

prolongement f de f (par souci de simplicité), bien qu’en toute rigueur, les fonctions f et f sont distinctes, puisqu’elles
n’ont pas le même ensemble de définition.

Exemple 30
• La fonction x ÞÝÑ x lnx n’est pas définie en 0, mais on peut la prolonger par continuité en ce point en lui donnant

la valeur 0 en 0, puisque lim
xÑ0

x lnx “ 0, par croissance comparée.

• La fonction x ÞÝÑ
sinx

x
n’est pas définie en 0, mais on peut la prolonger par continuité en ce point en lui donnant

la valeur 1 en 0, puisque lim
xÑ0

sinx

x
“ 1.

• Pour α ą 0, xα “ eα ln x ÝÑ
xÑ0

0, ainsi en posant 0α “ 0, on prolonge la fonction x ÞÝÑ xα, a priori définie sur R˚
`,

en une fonction continue sur R`.

4.3 Continuité par opérations
Que ce soit en un point, en un point à droite ou à gauche, ou sur un intervalle, une combinaison linéaire et un

produit de fonctions continues sont continus. Il en va de même pour l’inverse d’une fonction qui ne s’annule pas ainsi
que pour la composée de deux fonctions composables. Ces résultats découlent immédiatement des résultats analogues
concernant les limites de fonctions.

C pI,Rq est un sous-anneau de RI , dont les éléments inversibles sont les fonctions qui ne s’annulent pas sur I.
Corollaire 31

Les fonctions polynomiales sont continues sur R et les fractions rationnelles sont continues sur leurs ensembles
de définition respectifs.

Corollaire 32

Exemple 33 La fonction x ÞÝÑ
`

ln
`

x2 ` e1{x
˘˘2

est définie et continue sur R˚ par opérations.

Exemple 34 Pour toutes fonctions f, g P C pI,Rq, les fonctions maxtf, gu et mintf, gu sont continues sur I.

En effet, les fonctions maxtf, gu “
f ` g ` |f ´ g|

2
et mintf, gu “

f ` g ´ |f ´ g|
2

sont continues par opérations sur I.

4.4 Caractérisation séquentielle de la continuité
Le théorème suivant découle directement de son analogue pour les limites (cf. théorème 16).

Soit f : I ÝÑ R une fonction et a P I. Les assertions suivantes sont équivalentes
(i) f est continue en a.
(ii) Pour toute suite punqnPN de limite a à valeurs dans I, la suite pfpunqqnPN converge vers fpaq.

Théorème 35 – Caractérisation séquentielle de la continuité en un point

On reconnaîtra bien sûr le résultat mis en œuvre pour l’étude des suites récurrentes un`1 “ fpunq : si la suite
punqnPN converge vers ℓ et si f est continue en ℓ, alors ℓ est un point fixe de f .

✎ En pratique ✎ Ce résultat permet d’établir la discontinuité d’une fonction f en a. Il suffit pour cela d’exhiber
une suite convergeant vers a dont l’image par f ne converge pas vers fpaq.

Exemple 36 La fonction f : x ÞÝÑ cosp1{xq ne saurait être prolongée par continuité en 0.

En effet, la suite définie par xn “
1

nπ
converge vers 0, tandis que celle définie par fpxnq “ p´1q

n ne converge pas.
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La caractérisation séquentielle de la continuité combinée à celle de la densité de Q dans R permet d’établir la
caractérisation suivante des fonctions linéaires.

Exemple 37 – Équation fonctionnelle de Cauchy Les fonctions f P C pR,Rq telles que

@x, y P R, fpx ` yq “ fpxq ` fpyq

sont les fonctions linéaires x ÞÝÑ ax, avec a P R.

5 Théorèmes fondamentaux de continuité globale
La continuité globale désigne la continuité sur un intervalle – par opposition à la continuité ponctuelle en un point.

5.1 Le théorème des valeurs intermédiaires

Soit a, b P R avec a ď b. Si f P C pra , bs,Rq, alors tout réel compris entre fpaq et fpbq possède au moins un
antécédent par f dans ra , bs.

Théorème 38 – Théorème des valeurs intermédiaires (TVI), version « existence d’un antécédent »

Démonstration. Quitte à considérer ´f , on peut supposer que fpaq ď fpbq. Procédons par dichotomie. On pose a0 “ a et
b0 “ b et l’on va construire par récurrence, à partir du segment ra0 , b0s “ ra , bs, de nouveaux segments plus petits localisant un
antécédent de y P rfpaq , fpbqs. Précisément, soit n P N et supposons que l’on ait déjà construit des réels a0, . . . , an, b0, . . . , bn
tels que

(i) a “ a0 ď . . . ď an, bn ď . . . ď b0 “ b et, pour tout k P J0 , nK, bk ´ ak “
b ´ a

2k
;

(ii) pour tout k P J0 , nK, fpakq ď y ď fpbkq.

On définit alors au rang n ` 1 les réels an`1 et bn`1 de la façon suivante : on pose cn “
an ` bn

2
et

"

an`1 “ an et bn`1 “ cn si fpcnq ě y,
an`1 “ cn et bn`1 “ bn si fpcnq ă y.

Dans la mesure où cn est le milieu du segment ran , bns, les réels an`1 et bn`1 satisfont les assertions (i) et (ii) au rang n ` 1.
Les suites panqnPN et pbnqnPN ainsi construites sont adjacentes d’après (i) et possèdent donc une limite finie commune

x P ra , bs. Il suffit alors de passer à la limite dans (ii), ce qui est loisible par continuité de f , pour obtenir fpxq ď y ď fpxq et
donc y “ fpxq. ■

Remarque 39 Le théorème des valeurs intermédiaires assure que si y est entre fpaq et fpbq, alors l’équation fpxq “ y
possède au moins une solution. La dichotomie fournit même un procédé effectif de résolution approchée permettant
d’obtenir un encadrement d’une solution aussi précis que l’on veut.

Exemple 40 Toute fonction polynomiale de degré impair s’annule sur R.
En effet, une fonction polynomiale de degré impaire possède en ´8 et `8 des limites infinies de signes opposés ; elle prend
donc des valeurs positives et négatives. Comme elle est continue sur R, elle s’annule.

Le TVI s’énonce de façon équivalente sous la forme suivante.

L’image d’un intervalle par une fonction continue est un intervalle.
Théorème 41 – Théorème des valeurs intermédiaires, version « image d’un intervalle »

Démonstration. Soit I un intervalle et f P C pI,Rq. Pour établir que f rIs est un intervalle, considérons u, v P f rIs, avec u ď v,
et montrons que ru , vs Ă f rIs (théorème 23 du chapitre 9). Soit y P ru , vs. Par hypothèse, il existe a, b P I tels que u “ fpaq et
v “ fpbq. La version précédente du TVI assure alors l’existence de x entre a et b tel que y “ fpxq. En particulier, puisque I est
un intervalle, x P I et donc y “ fpxq P f rIs. ■
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10 Limites et continuité des fonctions

Remarque 42 Le théorème 41 implique clairement le théorème 38. En effet, avec les notations du théorème 38,
pour tout réel y entre fpaq et fpbq, on a y P rmintfpaq, fpbqu ,maxtfpaq, fpbqus Ă f

“

ra , bs
‰

, puisque f
“

ra , bs
‰

est un
intervalle (théorème 23 du chapitre 9).

Attention !
• Il suffit d’un point de discontinuité pour que le TVI tombe en défaut.
• Le TVI affirme que l’image continue f rIs d’un intervalle I est également un intervalle, toutefois I et f rIs ne sont

pas a priori de même nature.

Un intervalle

Pas un
intervalle

I

f rIs

I ouvert et f rIs fermé.

I

f rIs

I semi-ouvert et f rIs ouvert.

Remarque 43 – (non essentielle)
• Le TVI est faux dans Q. Par exemple, la fonction f : x ÞÝÑ x2 ´ 2 de Q dans Q est continue sur r0 , 2s et vérifie
fp0q “ ´2 et fp2q “ 2. Cependant, il n’existe pas de nombre rationnel x tel que fpxq “ 0.

• On dit qu’une fonction f de R dans R satisfait la propriété des valeurs intermédiaires lorsque l’image par f de tout
intervalle est encore un intervalle. Le TVI énonce ainsi que les fonctions continues satisfont cette propriété. Mais
plus généralement, les fonctions dérivées (qui ne sont pas en général des fonctions continues) satisfont également
la propriété des valeurs intermédiaires (théorème de Darboux, cf. exercice 19.26). De façon plus baroque, on peut
aussi « construire » des fonctions discontinues en toute abscisse réelle et qui satisfont toujours cette propriété
des valeurs intermédiaires !

5.2 Le théorème des bornes atteintes

Les deux assertions suivantes sont vraies et équivalentes.
(i) Une fonction continue sur un segment y est bornée et atteint ses bornes, i.e. admet un minimum et un

maximum.
(ii) L’image d’un segment par une fonction continue est un segment. Précisément, si f est continue sur ra , bs,

alors f
“

ra , bs
‰

“ rm,M s, où m “ min
ra,bs

f et M “ max
ra,bs

f .

Théorème 44 – Théorème des bornes atteintes

Démonstration. L’équivalence entre (i) et (ii) est claire, via le TVI. Cf. annexe A pour une preuve de (i). ■

Nous avons observé que la continuité ne préserve pas la forme d’un intervalle en gé-
néral. Toutefois, le théorème précédent affirme qu’un segment est toujours transformé
en un segment par une fonction continue.

Attention ! Sur un intervalle borné qui n’est pas un segment, une fonction
continue n’a aucune raison d’être bornée, e.g. la fonction inverse sur s0 , 1s.

a b

f
“

ra , bs
‰

min
ra,bs

f

max
ra,bs

f

Exemple 45 La fonction f : x ÞÝÑ x lnx possède un minimum sur s0 , 1s.
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5.3 Théorème de la bijection continue, continuité d’une réciproque
Le TVI est un théorème d’« existence » : il garantit l’existence d’un antécédent de y par f ou, de façon équivalente,

d’une solution à l’équation y “ fpxq. Pour obtenir en plus l’unicité, une condition suffisante réside dans la stricte
monotonie de f .

• Si I est un intervalle et f une fonction continue et strictement monotone sur I, alors f réalise une
bijection de I sur l’intervalle f rIs.

• Dans ces conditions, la réciproque f´1 est continue et strictement monotone, de même sens de variation que
f , sur l’intervalle f rIs.

Théorème 46 – Théorème de la bijection continue

Démonstration. Cf. annexe A. ■

Les graphes de f et f´1 sont symétriques l’un de l’autre par rapport à la
première bissectrice. Si le graphe de f peut être tracé sans que l’on ait à
lever le crayon, comment le graphe de f´1 ne le serait-il pas ?

y “ fpxq

y “ f´1pxq y “ x

Remarque 47 Selon la nature de I et la monotonie de f , l’obtention de f rIs varie, e.g. pour deux réels a ă b,

a b

fpaq

fpbq

I “ ra , bs et f rIs “ rfpaq , fpbqs.

a b

lim
b

f

fpaq

I “ ra , br et f rIs “slim
b

f ; fpaqs.
a b

lim
a

f

lim
b

f

I “ sa , br et f rIs “slim
a

f ; lim
b

f r.

Il existe bien sûr d’autres versions selon que f est strictement croissante ou décroissante et définie ou non en a et b,
avec éventuellement a “ ´8 ou b “ `8.

Exemple 48
• La fonction exponentielle est définie comme la réciproque de la logarithme népérien. Elle est donc, à l’instar de

la fonction logarithme népérien, à valeurs dans R˚
`, continue et strictement croissante sur R.

• La fonction arctangente est définie comme la réciproque de la fonction tangente restreinte à
‰

´π
2 , π

2

“

. Elle est
donc, à l’instar de la fonction tangente, à valeurs dans

‰

´π
2 , π

2

“

, continue et strictement croissante sur R.

Exemple 49 – Fonctions puissances
• Soit n P N˚. La fonction racine ne est définie comme la réciproque de la fonction puissance f : x ÞÝÑ xn restreinte

à R`. Elle est donc, à l’instar de la fonction f |R`
, à valeurs dans R`, continue et strictement croissante sur R`.

On note x1{n ou n
?
x l’image de x par f´1. Le cas n “ 2 correspond à la fonction racine carrée.

• Si n est un entier naturel impair, la fonction x ÞÝÑ xn réalise une bijection de R sur R, ce qui permet de définir
la racine ne sur R. Le cas n “ 3 correspond à la racine cubique 3

?
¨.

• Soit α P R. Plus généralement, la fonction puissance x ÞÝÑ xα “ eα ln x réalise une bijection de R˚
` sur R˚

` –
elle est continue et strictement croissante (resp. décroissante) si α ą 0 (resp. α ă 0). Sa bijection réciproque est
x ÞÝÑ x1{α.

Remarque 50 – Limites aux bornes d’une réciproque Soit f P C pra , br,Rq, avec a ă b. Si f est strictement
croissante et si lim

b
f “ ℓ P R, alors f réalise une bijection de ra , br sur rfpaq , ℓr et il semble évident que lim

ℓ
f´1 “ b.

Notons alors que la justification de cette limite découle essentiellement du théorème de la limite monotone.
En effet, f´1 est croissante à l’instar de f , ainsi la limite lim

ℓ
f´1 existe, d’après le théorème de la limite monotone, notons là

L. Par composition de limite, il vient

f´1
pfpxqq ÝÑ

xÑb
L et f´1

pfpxqq “ x ÝÑ
xÑb

b,

d’où le résultat par unicité de la limite.
Ce raisonnement s’adapte bien sûr à f strictement décroissante et avec un intervalle de départ d’un autre type.
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12 Limites et continuité des fonctions

Terminons ce paragraphe avec une réciproque partielle du théorème 62 du chapitre 3.

Soit f P C pI,Rq. Si f est injective sur l’intervalle I, alors f est strictement monotone sur I.
Théorème 51 – Injectivité et stricte monotonie (bis)

Démonstration. Cf. annexe A. ■

6 Extension aux fonctions à valeurs complexes
Cette ultime section vise à étendre brièvement les définitions et théorèmes précédents aux fonctions de la variable

réelle à valeurs complexes.

6.1 Limites des fonctions

Soit f : D ÝÑ C une fonction, a P R adhérent à D et ℓ P C. On dit que f admet ℓ pour limite en a lorsque la
fonction réelle |f ´ ℓ| tend vers 0 en a. Dans ce contexte, le théorème d’unicité de la limite reste valable, ce qui
autorise les notations lim

a
f “ ℓ et lim

xÑa
fpxq “ ℓ.

Définition 52 – Limite d’une fonction en un point

Attention ! Comme pour les suites complexes, la notion de limite infinie n’a aucun sens pour les fonctions
à valeurs complexes.

On dispose naturellement de résultats similaires à ceux obtenus pour les suites complexes.

Soit f : D ÝÑ C une fonction, a P R adhérent à D et ℓ P C. Si lim
a

f “ ℓ, alors

(i) la fonction |f | tend vers |ℓ| en a et, en particulier, la fonction f est bornée au voisinage de a ;
(ii) la fonction f tend vers ℓ en a.

Théorème 53

Soit f : D ÝÑ C une fonction, a P R adhérent à D et ℓ P C. Les assertions suivantes sont équivalentes :

(i) lim
a

f “ ℓ. (ii) lim
a

Repfq “ Repℓq et lim
a

Impfq “ Impℓq.

Théorème 54 – Caractérisation de la limite par les parties réelle et imaginaire

Exemple 55

• La fonction f : x ÞÝÑ
1

1 ` ix
, définie sur R, admet 0 pour limite en `8, car lim

xÑ`8
|fpxq| “ lim

xÑ`8

1
?
1 ` x2

“ 0.

• La fonction f : x ÞÝÑ
eix

x
, définie sur R˚, n’a pas de limite en 0, puisque sa partie réelle x ÞÝÑ

cosx

x
n’en a pas.

Les notions de limites à gauche et à droite, ainsi que la caractérisation de la limite en termes de limite à gauche et
à droite, sont maintenues pour les fonctions complexes. La caractérisation séquentielle de la limite l’est également. Par
ailleurs, les théorèmes opératoires sur les limites (addition, produit, quotient) restent valables, modulo la suppression
des colonnes liées aux cas ˘8 des tables de la section 2.1.

En revanche, les théorèmes cruciaux d’existence de limite de la section 3 (théorèmes d’encadrement / majoration /
minoration et théorème de la limite monotone) n’ont aucun sens dans le cas complexe, dans la mesure où ces théorèmes
s’appuient de façon essentielle sur la relation d’ordre de R.

R. Basson – Lycée Fénelon Sainte-Marie – MPSI Année 2025–2026

https://www.fenelonsaintemarie.org


Limites et continuité des fonctions 13

6.2 Fonctions continues
Dans l’ensemble de ce paragraphe, I désigne un intervalle de R contenant au moins deux points.

Soit f : I ÝÑ C une fonction et a P I.
• La fonction f est dite continue en a lorsque lim

a
f existe. Le cas échéant, lim

a
f “ fpaq, f étant définie en a.

• La fonction f est dite continue sur I lorsqu’elle est continue en tout point de I. On note C pI,Cq (ou C 0pI,Cq)
l’ensemble des fonctions continues sur I à valeurs complexes.

Définition 56 – Continuité

Soit f : I ÝÑ C une fonction. La fonction f est continue sur I si et seulement si Repfq et Impfq le sont.
Théorème 57 – Caractérisation de la continuité

Les notions de continuité à gauche et à droite, ainsi que la caractérisation de la continuité en termes de continuité à
gauche et à droite, sont aussi maintenues pour les fonctions complexes. La caractérisation séquentielle de la continuté
l’est également. Par ailleurs, les théorèmes opératoires sur la continuité (combinaison linéaire, produit, quotient) restent
valables. En revanche, les théorèmes fondamentaux de la section 5 sont réservés aux fonctions à valeurs réelles.

Exemple 58
• Les fonctions polynomiales et les fractions rationnelles à coefficients complexes sont continues sur leurs ensembles

de définition respectifs.
• Si f une fonction à valeurs complexes est continue sur I, il en va de même de f , |f | et ef .

En effet, on procède par opérations sur les fonctions réelles à partir des égalités

f “ Repfq ´ i Impfq, |f | “
a

Repfq2 ` Impfq2 et ef “ eRepfq cospIm fq ` i eRepfq sinpIm fq.

7 Continuité uniforme
La notion plus exigeante de continuité suivante sera exploitée au chapitre 25 pour la construction de l’intégrale.

Une fonction f définie sur un intervalle I de R et à valeurs complexes est dite uniformément continue sur I
lorsque

@ε ą 0, Dη ą 0, @px, yq P I2, |x ´ y| ď η ùñ |fpxq ´ fpyq| ď ε.

Définition 59 – Continuité uniforme

Rappelons que la continuité de f sur I s’écrit

@x P I, @ε ą 0, Dη ą 0, @y P I, |x ´ y| ď η ùñ |fpxq ´ fpyq| ď ε.

La différence entre les deux notions réside ainsi dans l’indépendance de la variable η de l’uniforme continuité vis-à-vis
de la variable x (η ne dépendant que de ε) tandis que pour la continuité η dépend a priori de x.

Si une fonction f est uniformément continue sur un intervalle I, alors f est continue sur I.
Théorème 60

Attention ! La réciproque du théorème précédent est fausse en toute généralité, comme l’établit l’exemple
suivant. On dispose néanmoins d’une réciproque partielle sur les segments (cf. théorème 62).

Exemple 61 La fonction carrée est uniformément continue sur r0, 1s, mais n’est pas uniformément continue sur R.

Si I est un segment de R, alors toute fonction continue sur I est uniformément continue sur I.
Théorème 62 – Théorème de Heine

Démonstration. Admis conformément au programme. Une preuve est donnée à l’annexe A. ■
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8 Fonctions lipschitziennes

Soit I un intervalle et k un réel positif. Une fonction f : I ÝÑ C est dite k-lipschitzienne† sur I lorsque

@x, y P I, |fpxq ´ fpyq| ď k|x ´ y|.

Une fonction est dite lipschitzienne s’il existe un réel positif k pour lequel elle est k-lipschitzienne.

Définition 63 – Fonction lipschitzienne

Les variations des applications lipschitziennes sont donc contrôlées linéairement par celles de la variable. Géomé-
triquement, une fonction est k-lipschitzienne si les pentes des cordes de son graphe sont majorées en valeur absolue
par k.

Exemple 64
1. Toute fonction affine x ÞÝÑ ax ` b est |a|-lipschitzienne.
2. La fonction valeur absolue est 1-lipschitzienne sur R.

En effet, pour tous x, y P R, ||x| ´ |y|| ď |x ´ y| (inégalité triangulaire généralisée).

Exemple 65 La fonction inverse est 1-lipschitzienne sur r1 ,`8r, mais n’est pas 1-lipschitzienne sur s0 ,`8r.

En effet, pour tous x, y P r1 ,`8r,
∣∣∣∣ 1x ´

1

y

∣∣∣∣ “
|x ´ y|
xy

ď |x ´ y|, puisque xy ě 1.

En revanche, ∣∣∣∣1 ´
1
1
2

∣∣∣∣ “ |1 ´ 2| “ 1 ą
1

2
“

∣∣∣∣1 ´
1

2

∣∣∣∣.
x

y

O x y

Pente inférieure à 1

0,5 1

Pente supérieure à 1

Si une fonction f est lipschitzienne sur un intervalle I, alors f est uniformément continue sur I.
Théorème 66 – Lien entre continuité uniforme et lipschitziannité

Démonstration. Si f est k-lipschitzienne sur I, avec k ą 0, alors, pour tout ε ą 0, le réel η “ ε{k convient. ■

Attention ! La réciproque est fausse ! Comme le montre le deuxième point de l’exemple ci-après.

Exemple 67
• La fonction sinus est uniformément continue sur R.
• La fonction racine carrée est uniformément continue sur R`, mais n’est pas lispschitzienne sur R`.

Remarque 68 En revanche, une fonction peut être lipschitzienne sans être dérivable (cf. exemple 64).

Application aux suites un`1 “ fpunq. Considérons un intervalle I, une fonction f : I ÝÑ R pour laquelle I est
stable et u0 P I. Notons alors punqně0 l’unique suite définie par la relation un`1 “ fpunq, pour tout n P N. Sous les
hypothèses

• f possède un unique point fixe ℓ dans I ;
• f est k-lipschitzienne avec k P r0 , 1r ;

on démontre par récurrence sur n que
@n P N, |un ´ ℓ| ď kn|u0 ´ ℓ|.

On en déduit par encadrement que punqně0 converge vers ℓ, car |k| ă 1. Mieux, la suite punqně0 converge rapidement
vers sa limite, au sens où elle converge vers ℓ au moins aussi vite que la suite géométrique pknqně0 tend vers 0.

Exemple 69 La suite punqně0 définie par u0 ě 0 et un`1 “
2un ` 2

2 ` un
, pour tout n P N, converge vers

?
2.

†. Rudolf Otto Sigismund Lipschitz (1832 à Königsberg – 1903 à Bonn) est un mathématicien allemand.
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Compétences à acquérir
• Obtention de limites par opérations : exercices 1 à 3.
• Utilisation de la caractérisation séquentielle de la limite : exercice 4.
• Manipulation de la notion de limite en revenant à la définition : exercices 11,12 et 44.
• Étude des branches infinies d’une fonction : exercices 5 et 6.
• Étude de la continuité par opérations : exercice 16.
• Étude de la continuité par définition : exercices 15, 16 et 21 (voire 23 et 24).
• Utilisation de la caractérisation séquentielle de la continuité : exercices 10, 17 et 28 à 31.
• Utilisation du TVI : exercices 34 à 39.
• Utilisation du théorème des bornes atteintes : exercices 43 à 45.
• Montrer qu’une fonction est (ou n’est pas) uniformément continue : exercices 48 à 50.
• Exploiter la continuité uniforme d’une fonction : exercices 51 et 52

Quelques résultats classiques :
• Continuité des fonctions maxtf, gu et mintf, gu (exemple 34).
• Équation fonctionnelle de Cauchy (exemple 37).
• Annulation des fonctions polynomiales réelles de degré impair (exemple 40).
• Un théorème de point fixe pour les fonctions contractantes (exercice 20).
• Un théorème de point fixe pour les fonctions continues d’un segment dans lui-même (exercice 35).
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16 Limites et continuité des fonctions

A Annexe
Démonstration du théorème 3.

(i) Par l’absurde, supposons que f admet deux limites ℓ et ℓ1 distinctes. Il existe alors Vℓ et Vℓ1 des voisinages respectifs de ℓ
et ℓ1 disjoints (point (ii) du théorème 25 du chapitre 9) et, par hypothèse, il existe Va et V 1

a deux voisinages de a tels que

@x P Va X D, fpxq P Vℓ et @x P V 1
a X D, fpxq P Vℓ1 .

Or D X Va X V 1
a ‰ H et, pour tout x P D X Va X V 1

a , fpxq P Vℓ X Vℓ1 “ H. Contradiction !
(ii) Supposons que a P D, i.e. f est définie en a, et que f possède une limite en a, notée ℓ.

• Par l’absurde supposons ℓ “ `8. Il existe alors, par hypothèse, un voisinage Va de a tel que, pour tout x P Va X D,
fpxq P sfpaq ,`8r. Pour x “ a P Va X D, on aurait fpaq P sfpaq ,`8r, ce qui est contradictoire !
On établit de même que ℓ “ ´8 est exclu. Ainsi ℓ “ R.

• Montrons que ℓ “ fpaq. Soit ε ą 0, il existe, par hypothèse, un voisinage Va de a tel que, pour tout x P Va X D,
fpxq P sℓ ´ ε , ℓ ` εr. En particulier, pour x “ a, |fpaq ´ ℓ| ă ε. Nécessairement ℓ “ fpaq.

Démonstration du théorème 10. Traitons le point (i).
• Supposons que lim

a
f “ ℓ. D’après le point (ii) du théorème 3, fpaq “ ℓ. En outre, soit Vℓ un voisinage de ℓ.

Par hypothèse, il existe un voisinage Va de a tel que, pour tout x P Va X D, fpxq P Vℓ. A fortiori, pour tout x P

Va X D X s´8 , ar, fpxq P Vℓ, soit lim
a´

f “ ℓ, et de même lim
a`

f “ ℓ.

• Réciproquement, supposons que lim
a´

f “ lim
a`

f “ fpaq “ ℓ. Nécessairement ℓ P R. Soit ε ą 0, par hypothèses

✕ il existe η´
ą 0 tel que, pour tout x P D, a ´ η´

ă x ă a ùñ |fpxq ´ ℓ| ă ε ;
✕ il existe η`

ą 0 tel que, pour tout x P D, a ă x ă a ` η`
ùñ |fpxq ´ ℓ| ă ε ;

or |fpaq ´ ℓ| “ 0 ă ε, ainsi, en posant η “ min
␣

η´, η`
(

on a η ą 0 et, pour tout x P D, l’implication

|x ´ a| ă η ùñ |fpxq ´ ℓ| ă ε,

soit lim
a

f “ ℓ.

Démonstration du théorème 14. Contentons-nous de prouver (ii). Posons ℓ “ lim
a

f .

• Si ℓ “ `8, il existe un voisinage Va de a tel que, pour tout x P D X Va, fpxq P sm,`8r.
• Si ℓ P R, sachant que ℓ ´ m ą 0 par hypothèse, il existe un voisinage Va de a tel que

@x P Va X D, fpxq P sℓ ´ pℓ ´ mq , ℓ ` pℓ ´ mqr Ă sm,`8r.

Dans les deux cas, f ą m au voisinage de a.

Démonstration du théorème 16.
• (i) ùñ (ii). Supposons que lim

a
f “ ℓ. Soit punqnPN une suite de limite a à valeurs dans D. Soit Vℓ un voisinage de ℓ. Par

hypothèse, il existe un voisinage Va de a tel que, pour tout x P Va X D, fpxq P Vℓ. Par ailleurs, il existe un rang N tel que,
pour tout n ě N , un P Va, d’où un P Va et finalement fpunq P Vℓ.

• (ii) ùñ (i). Traitons le cas particulier, a, ℓ P R. Les autres cas étant similaires. Contraposons en supposant que f n’admet
pas ℓ pour limite en a. Il existe donc ε0 ą 0 tel que

@η ą 0, Dx P D, |x ´ a| ă η et |fpxq ´ ℓ| ě ε0.

Pour tout n P N˚, l’assertion précédente fournit pour η “
1

n
un réel un P D tel que |un ´ a| ă

1

n
et |fpunq ´ ℓ| ě ε0. La

suite punqně1 ainsi construite est à valeurs dans D et converge vers a, tandis que la suite pfpunqqně1 n’admet pas ℓ pour
limite.

Démonstration du théorème 18.
1. Supposons que lim

a
m “ lim

a
M “ ℓ et que m ď f ď M au voisinage de a. Soit ε ą 0,

• il existe un voisinage Va de a tel que, pour tout x P Va X D, mpxq ď fpxq ď Mpxq ;
• il existe un voisinage V 1

a de a tel que, pour tout x P V 1
a X D, ℓ ´ ε ă mpxq ;

• il existe un voisinage V 2
a de a tel que, pour tout x P V 2

a X D, Mpxq ă ℓ ` ε ;
alors Va X V 1

a X V 2
a est un voisinage de a et, pour tout x P Va X V 1

a X V 2
a X D, on a l’implication

ℓ ´ ε ă mpxq ď fpxq ď Mpxq ă ℓ ` ε ùñ |fpxq ´ ℓ| ă ε,

soit lim
a

f “ ℓ.

2. Supposons que lim
a

m “ `8 et que f ě m au voisinage de a. Soit A ą 0,

• il existe un voisinage Va de a tel que, pour tout x P Va X D, fpxq ě mpxq ;
• il existe un voisinage V 1

a de a tel que, pour tout x P V 1
a X D, mpxq ą A ;

alors Va X V 1
a est un voisinage de a et, pour tout x P Va X V 1

a X D, fpxq ě mpxq ą A, soit lim
a

f “ `8.
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Limites et continuité des fonctions 17

Démonstration 1 du point (i) du théorème 44 (via le théorème de Bolzano-Weierstrass).
Montrons que f admet une borne supérieure M sur ra , bs et qu’il existe x P ra , bs tel que M “ fpxq.
• Par l’absurde, supposons f non majorée sur ra , bs, i.e.

@A P R, Dx P ra , bs, fpxq ą A.

On peut alors construire une suite pxnqnPN d’éléments de ra , bs telle que :

@n P N, fpxnq ě n. p‹q

Cette suite étant bornée par construction, on peut en extraire une sous-suite convergente
`

xφpnq

˘

nPN dont la limite α est
dans ra , bs (théorème de Bolzano-Weierstrass). Comme f est continue en α, on en déduit que

`

f
`

xφpnq

˘˘

nPN est une suite
convergente donc bornée, ce qui est en contradiction avec la relation p‹q. Par conséquent, f est majorée sur ra , bs.

• Raisonnons à nouveau par l’absurde, en supposant que M “ sup
ra,bs

f ne soit pas atteint, i.e.

@x P ra , bs, fpxq ‰ M.

La fonction g : x ÞÝÑ 1
M´fpxq

est alors définie et continue surra , bs, comme inverse d’une fonction continue qui ne s’annule
pas. Or, on a vu dans la première partie de la démonstration que toute application continue sur le segement ra , bs est
majorée. Soit donc A un majorant (strictement positif) de g. On a

@x P ra , bs, gpxq ď A
et donc

@x P ra , bs, fpxq ď M ´
1

A
.

Le réel M ´
1

A
est alors un majorant de f strictement plus petit que M , ce qui contredit le fait que M est la borne

supérieure de f sur ra , bs. Il existe donc x P ra , bs tel que M “ fpxq.
En appliquant ce qui précède à ´f , on en déduit que f possède aussi une borne inférieure et que celle-ci est atteinte.

Démonstration 2 du point (i) du théorème 44 (par dichotomie). Nous nous contentons là aussi de montrer que f
possède un maximum (il suffit de considérer ´f pour le minimum). Nous donnons une seconde démonstration par dichotomie
et introduisons pour cela la notion suivante

Soit f : ra , bs ÝÑ R une fonction. Un intervalle rc , ds Ă ra , bs est dit dominant pour f lorsqu’il vérifie

@x P ra , bs, Dy P rc , ds, fpyq ě fpxq.

Définition 70 – Intervalle dominant pour une fonction (HP)

On dispose alors du lemme suivant

Soit f : ra , bs ÝÑ R une fonction. Si l’intervalle rc , ds Ă ra , bs est dominant pour f et si e P rc , ds, alors l’un des intervalles
rc , es ou re , ds est dominant pour f .

Lemme 71

Démonstration. Si rc , es est dominant pour f , c’est gagné. Sinon, il existe x0 P ra , bs tel que, pour tout y P rc , es, fpx0q ą fpyq.
Or, puisque rc , ds est dominant pour f , il existe y0 P rc , ds tel que fpy0q ě fpx0q et donc y0 P re , ds. On en déduit le caractère
dominant de re , ds. En effet, soit x P ra , bs. Il existe y P rc , ds tel que fpyq ě fpxq. Soit y P re , ds, c’est réglé, soit y P rc , es,
auquel cas fpyq ă fpx0q ď fpy0q. ■

On suppose f continue sur le segment ra , bs. On part de a0 “ a et b0 “ b. Soit n P N, supposons que l’on ait déjà construit
des réels a0, . . . , an, b0, . . . , bn tels que

(i) a “ a0 ď . . . ď an, bn ď . . . ď b0 “ b et, pour tout k P J0 , nK, bk ´ ak “
b ´ a

2k
;

(ii) pour tout k P J0 , nK, rak , bks est dominant pour f .

On définit alors au rang n ` 1 les réels an`1 et bn`1 de la façon suivante : on pose cn “
an ` bn

2
et

"

an`1 “ an et bn`1 “ cn si ran , cns est dominant pour f ;
an`1 “ cn et bn`1 “ bn sinon.

Dans la mesure où cn est le milieu du segment ran , bns et en vertu du lemme précédent, les réels an`1 et bn`1 satisfont les
assertions (i) et (ii) au rang n ` 1.

Les suites panqnPN et pbnqnPN ainsi construites sont adjacentes d’après (i) et possèdent donc une limite finie commune
c P ra , bs. Montrons que fpcq est le maximum de f sur ra , bs. Soit x P ra , bs. Pour tout n P N, puisque ran , bns est dominant
pour f , il existe xn P ran , bns tel que fpxnq ě fpxq. Or, par encadrement, pxnqnPN converge vers c et, par continuité de f ,
pfpxnqqnPN converge vers fpcq, qui vérifie, par passage à la limite, fpcq ě fpxq.
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18 Limites et continuité des fonctions

Démonstration du théorème 46 (HP).
• D’après le TVI, f rIs est un intervalle. En outre, par stricte monotonie, f est injective sur I et donc bijective de I sur f rIs.
• Stricte monotonie. Supposons f strictement croissante sur I (l’autre cas est similaire) et montrons qu’il en va de même

de f´1 sur f rIs.
Soit y1, y2 P f rIs avec y1 ă y2. Par injectivité de f´1, f´1

py1q ‰ f´1
py2q et, par l’absurde, si f´1

py1q ą f´1
py2q, alors, par

stricte monotonie de f , y1 “ f
`

f´1
py1q

˘

ą f
`

f´1
py2q

˘

“ y2 – absurde ! Ainsi f´1
py1q ă f´1

py2q, comme souhaité.
• Continuité. Montrons que f´1 est continue sur J , en supposant par exemple f strictement croissante sur I (quitte à

changer f en ´f).
Soit y0 P J . Il existe x0 P I tel que y “ fpx0q. Supposons que x0 n’est pas une borne de I. Soit ε ą 0 tel que rx0 ´ ε , x0 ` εs Ă

I. Posons y1 “ fpx0 ´ εq et y2 “ fpx0 ´ εq. On a donc y1, y2 P J et y1 ă y0 ă y2, par stricte croissance de f , ce qui permet
de définir η “ minty0 ´ y1, y2 ´ y0u ą 0. On a alors l’assertion

@y P J, |y ´ y0| ă η ùñ y1 ă y ă y2 ùñ x0 ´ ε ă f´1
pyq ă x0 ` ε ðñ

∣∣f´1
pyq ´ f´1

py0q
∣∣ ă ε,

par stricte croissance de f´1 sur J , ce qui exprime la continuité de f´1 en y0.
Si x0 est une borne de l’intervalle I, on modifie légèrement la démonstration, en considérant rx0 , x0 ` εs ou rx0 ´ ε , x0s au
lieu de rx0 ´ ε , x0 ` εs.

Démonstration du théorème 51 (HP). Fixons deux points a, b P I quelconques pour lesquels a ă b.
Par injectivité de f , fpaq ‰ fpbq, ainsi quitte à remplacer f par ´f , qui est tout autant continue et injective que f , nous

pouvons supposer fpaq ă fpbq sans perte de généralité. Montrons alors que f est strictement croissante.
Soit x, y P I avec x ă y, à nouveau par injectivité de f , fpxq ‰ fpyq, mais rien ne garantit a priori que fpxq ă fpyq. En

d’autres termes, rien ne garantit que f ordonne fpxq et fpyq de la même manière qu’elle ordonne fpaq et fpbq.
Lorsque λ croit de 0 à 1, le réel p1 ´ λqa ` λx varie de a à x le long du segment qui joint ces deux abscisses, tandis que

p1 ´ λqb ` λy varie de b à y. En outre, I étant un intervalle, les réels ainsi obtenus sont tous des éléments de I, ensemble de
définition de f . Cette observation justifie la bonne définition de la fonction

φ : λ ÝÑ fpp1 ´ λqb ` λyq ´ fpp1 ´ λqa ` λxq

de r0 , 1s dans R. Remarquons alors que
• φp0q “ fpbq ´ fpaq ą 0 et nous cherchons le signe de φp1q “ fpyq ´ fpxq ;
• φ est continue sur r0 , 1s car f l’est sur I ;
• φ ne s’annule pas sur r0 , 1s. En effet, pour tout λ P r0 , 1s, si φpλq “ 0, alors par injectivité de f

p1 ´ λqa ` λx “ p1 ´ λqb ` λy
ce qui équivaut à

p1 ´ λq
loomoon

ě0

pb ´ aq
loomoon

ą0

` λ
loomoon

ě0

py ´ xq
loomoon

ą0

“ 0

et impose donc λ “ 1 ´ λ “ 0, ce qui est absurde.

Par conséquent, le TVI garantit que φ est strictement positive sur r0 , 1s, et en particulier φp1q “ fpyq ´ fpxq ą 0.

Démonstration du théorème 62.
Soit f une application continue sur un segment I. Supposons par l’absurde que f ne soit pas uniformément continue sur I,

i.e.
Dε ą 0, @η ą 0, Dpx, yq P I2, |x ´ y| ď η et |fpxq ´ fpyq| ą ε.

Considérons un tel ε ą 0. Pour tout η “ 2´n, avec n P N, on peut donc choisir pxn, ynq P I2 tel que

|xn ´ yn| ď
1

2n
et |fpxnq ´ fpynq| ą ε.

Les suites pxnqnPN et pynqnPN ainsi construites vérifient

lim
nÑ`8

pxn ´ ynq “ 0 et @n P N, |fpxnq ´ fpynq| ě ε. p˚q

L’intervalle I étant borné, la suite pxnqnPN est bornée et on peut donc en extraire une sous-suite
`

xφpnq

˘

nPN convergeant vers
un élément α (théorème de Bolzano-Weierstrass), et ce dernier appartient à I puisque I est un intervalle fermé. Comme

@n P N, yφpnq “ xφpnq `
`

yφpnq ´ xφpnq

˘

,

on a aussi lim
nÑ`8

yφpnq “ α, par somme de limites. Or, l’application f étant continue en α, on en déduit

lim
nÑ`8

`

f
`

xφpnq

˘

´ f
`

yφpnq

˘˘

“ lim
nÑ`8

f
`

xφpnq

˘

´ lim
nÑ`8

f
`

yφpnq

˘

“ fpαq ´ fpαq “ 0,

ce qui contredit p˚q.
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