16 | Limites et continuité des fonctions

Dans I’ensemble de ce chapitre, les lettres D et E désigneront des parties quelconques de R.

A Vinstar des suites, la notion de limite pour les fonctions repose sur celle de voisinage, qui a été introduite a la
définition 24 du chapitre 9.

Limite d’une fonction

Limite d’une fonction en un point

—— Définition 1 — Limite d’une fonction en un point

Soit f: D — R une fonction, a € R adhérent & D et £ € R. On dit que f admet ¢ pour limite en a lorsque :

‘ pour tout voisinage ¥; de /£, il existe un voisinage ¥, de a tel que : Ve e Dn¥,, f(x)e . ‘

Ainsi f admet ¢ pour limite en a lorsque f(z) reste aussi proche de ¢ que souhaité, & condition que x soit
suffisamment proche de a, ce que nous illustrons par les dessins ci-dessous pour diverses situations.
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lim f = 40 avec a € R limf=/¢avec/eRetaeR lim f = 400 avec a € R

Remarque 2 Les dessins ® et ® correspondent au cas o D est une réunion d’intervalles et ou a est & la jonction
de deux de ces intervalles sans appartenir au domaine de définition. La limite en un tel a, lorsqu’elle existe, peut étre
finie ou infinie.

—— Théoréme 3 — Unicité de la limite
Soit f : D — R une fonction et a € R adhérent & D.

(i) Si f posséde une limite en a, elle est unique et notée lim f ou lim f(x).
a

r—a

Pour tout £ € R, la relation lim f = ¢ est aussi notée f—+¢ ou f(z) — L.

(i) et si f posséde une limite en a, alors lim f = f(a) (dessin @).

Démonstration. Cf. annexe A. [ |
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Limites et continuité des fonctions

La traduction du point (ii) est la suivante.

f est définie en a mais
lim f n’existe pas.
a

f est définie en a fa) |------->-----
et h(lsz = f(a).

Nous verrons toutefois
que lim f = lim f.
a— a*t

I

|
| I
| I
| I
| I
| I

I
1 !

| a | a

La définition précédente de la limite d’une fonction en un point se décline sous forme d’assertions quantifiées, selon
le caractére fini ou infini de a et de £.

—— Définition 4 — Les 9 versions de limites
Soit f : D — R une fonction, a € R adhérent a D et £ € R.

e CasouflcRetacR:

lim f = ¢ — Ve>0, In>0, VexeD, |z—al<n = |f(z)—{ <e.
e Casouf=+weta=+0w:
lJirmf=+oo — YVA>0, IB>0, VYexeD, z>DB = f(z)> A.
[oe]
e Casoufl=—-weta=+w:
limf:—oo — VA<0, 3IB>0, VYxeD, z>B = f(z)<A.
o0
e Casouf=+weta=—ow:
l_igréf:—koo — VA>0, IB<0, VzxeD, z<B = f(z)> A.
e Casoufl=—-oeta=—-w:
lim f = —o0 — VA<0, 3B<0, VxeD, z<B = f(z)<A.
—0o0
e CasoufeReta=+w:
1_i£gf=€ — Ve>0, IB>0, VxeD, z>B = |f(z)—{|<e.
e CasoufeReta=—w:
limf =14 — Ve>0, dB<0, VreD, z<B = |f(z)—/{ <e.
—0o0

e Casoul=+wetacRa¢D:
lim f = 4+ — YVA>0, In>0, VeeD, |z—al<n = f(z)>A.

e Casoufl=—-oetacRa¢D:
lim f = —o0 — VA<0, 3In>0, VeeD, |z—a<n = f(z)<A
a

Remarque 5 A l'instar des définitions données pour les suites, on peut remplacer dans les définitions précédentes les
inégalités strictes des implications par des inégalités larges.

1
Exemple 6 lim — =0.

p —>to0 /7
En effet, nous devons établir que: Ve >0, JA >0, VzeR* >4 = ‘% — O‘ <e.

Soit € > 0. Pour tout « € R¥,

1 1 1 1 1
— -0 = — et ——<e = VJI>- = > —.
NG €

VT VT e

Posons alors A = E% D’aprés ce qui précéde : Vz e R%, 2> A = <

Vz

—0’<E.

Le résultat qui suit est ’analogue de celui concernant les suites convergentes.

Théoréme 7 — Limite finie et caractére localement bornée

Soit f : D — R une fonction et a € R adhérent & D. Si f posséde une limite FINIE en a, alors f est bornée au
voisinage de a.

Démonstration. Par hypothése, il existe un voisinage ¥, de a sur lequel |f(z) — 4| < 1. En particulier,
VeeDn e, |f(x)l=If(x)—€+L<I[f(z)—L+ €] <[]+1,

ce qui établit que f est bornée sur D n 7. [ |
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Limite d’une fonction a gauche/a droite en un point

—— Définition-théoréme 8 — Limite d’une fonction a gauche/a droite en un point

Soit f : D —> R une fonction, a € R adhérent & D et £ € R. On suppose f définie au voisinage de a & gauche/a
droite.

e On dit que f admet £ pour limite a gauche en a lorsque f|p~j—uw,qf admet £ pour limite en a. En tant que
limite, la limite de f en a & gauche, si elle existe, est unique et notée lim f, lim f(z) ou lim f(z).
Plus concrétement, lim f = /¢ lorsque ¢ e r<a
e

x Cas ou £ € R. Ve>0, In>0, VreD, a—-n<z<a = |f(x)—{ <e.
x Cas ol £ = +oo0. YVA>0, In>0, VereD, a—-n<z<a = f(z)> A
x Cas ou £ = —o0. VA<0, In>0, VreD, a-n<z<a = f(z)<A.

¢ On définit de méme la notion de limite a droite en a en considérant la restriction f|pja,+o[- Si elle existe,
cette limite est notée lim f, lim f(x) ou lim f(x).
at x—at T—a

r>a

Exemple 9 Cette notion s’illustre aisément avec la trés classique fonc-

1
tion inverse f : R* — R* , z —— —, pour laquelle
x

limf=-0w et limf=+oo.
0- o+

Notamment la fonction inverse n’admet pas de limite en 0, dans la
mesure ou ses limites & gauche et & droite en 0 ne coincident pas.

—— Théoréme 10 — Caractérisation de la limite via les limites a gauche/a droite

Soit f : D — R une fonction, a € R adhérent & D et £ € R. On suppose f définie au voisinage de a & gauche et
a droite.

(i) Siae D, on aléquivalence limf=/¢ <= limf= hIPf =/{ ET (= f(a).
a a— a

(i) Sia¢ D, on a l’équivalence limf=¢{ < limf= liIPf =/
a a— a

Démonstration. Cf. annexe A. [ |

Pour saisir la nécessité de la condition « ET £ = f(a) » du cas (i), il suffit d’observer les deux figures qui suivent le
théoréme 3.
e” siz >0,

Exemple 11 Soit f la fonction définie sur R par f(z) = { l— 2 sia<0

Alors h(I)l’lf =1.

En effet, limf = lim (1—-2z) =1, liErnf =
0- 0

z—0—

lim e* =1 et f(0)=¢e’=1.
o+

x—

Manipulation des limites

La base du calcul des limites repose sur la connaissance des limites des fonctions usuelles (rappelées au chapitre 5),
leurs combinaisons par opérations et les résultats de croissances comparées entre les fonctions logarithmes, puissances
et exponentielles (également rappelés au chapitre 5).

Les résultats des deux paragraphes suivants concernant les limites par opérations et en lien avec les inégalités
s’énoncent de fagon analogues, lorsque cela a un sens, pour des limites & gauche ou a droite.

vl Opérations sur les limites

Soit f et g deux fonctions et a € R tels que lim f et lim ¢ EXISTENT. Dans ce paragraphe, £, ¢/ désigneront deux
a a

réels. Les tableaux ci-dessous énoncent les résultats concernant les EVENTUELLES limites en a de la somme f + g, du
produit fg et du quotient f/g. Précisément, les cas d’indétermination, i.e. ceux pour lesquels il n’est pas possible de
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n] Limites et continuité des fonctions

conclure a priori, sont indiqués par 7 7 7. On observera que ces résultats sont totalement similaires a ceux énoncés pour
les suites! On pourra d’ailleurs s’inspirer des démonstrations données pour les suites pour établir les régles ci-aprés.

Produit
Somme
. lim f ¢ £ # 0 ou o 0
hgn ! ¢ ou likoo ou e—oo o ‘
lim g v +0 —a0 —00 limg ¢ © ©
a
i 4 +00 —o0 777 . w
hén(f +9) h(rln(fg) e + régle des signes ree
Quotient
lim f ¢ 0 ¢ © £#0 ¢ ou 0
a ou oo
lim g 0 #0 0 #0 o0 o0 0" ou 0~ 0
o9 oe)
im £ £ + régle 0 727 |+ regle 777
a g v des signes des signes

Terminons les opérations sur les limites avec leur composition.

—— Théoréme 12 — Composition de limites
Soit f: D — E et g : E —> R deux fonctions, a € R adhérent & D, b € R adhérent & F et c € R.

Si limf=0 et liing =c¢, alors limgof=c.

Démonstration. Soit ¥. un voisinage de c¢. Par hypothése sur g, il existe un voisinage ¥, de b tel que, pour tout x € ¥, N E,
g(z) € Y. Par hypothése sur f, il existe alors un voisinage ¥, de a tel que, pour tout x € ¥, n D, f(x) € %. Par conséquent,
pour tout z € ¥, N D, f(x) € ¥ n E et donc g(f(x)) € ¥, d’ou la conclusion. [ |

—2x 1
Exemple 13 lim In 67: =0
r— 400 (efz +1)

Limites et relation d’ordre

—— Théoréme 14 — Limites et inégalités strictes
Soit f : D — R une fonction, a € R adhérent & D et m, M € R.

(i) Silim f < M, alors f < M au voisinage de a. (ii) Silim f > m, alors f > m au voisinage de a.

Démonstration. Cf. annexe A. |

—— Théoréme 15 — Limites et inégalités larges

Soit f,g: D — R deux fonctions et a € R adhérent & D. On suppose que f et g ont des limites FINIES en a.

Si f < g au voisinage de a, alors lim f < lim g.
a a

Ce résultat est le plus souvent utilisé lorsque 'une des deux fonctions est constante.

Démonstration. Raisonnons par 1’absurde en supposant que lim(g — f) < 0. Le théoréme précédent affirme alors que g — f < 0

au voisinage de a, contradiction ! |
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¥ ArTrENTION | ®  Le résultat précédent est faux avec des inégalités STRICTES !

Par exemple, e* > 0, pour tout « € R, mais lim e = 0.
r——00

On retiendra que ’ Seules les inégalités larges sont conservées lors d’'un passage a la limite. ‘

Caractérisation séquentielle de la limite d'une fonction

Le résultat suivant généralise le théoréme de composition par une fonction pour les limites de suites (théoréme 23
du chapitre 15).

—— Théoréme 16 — Caractérisation séquentielle de la limite d’une fonction
Soit f : D — R une fonction, a € R adhérent & D et £ € R. Les assertions suivantes sont équivalentes
(i) im f =¢.
a

(ii) Pour toute suite (uy,), .y de limite a & valeurs dans D, la suite (f(uy)), oy & pour limite £.

Démonstration. Cf. annexe A. [ |

% En pratique & Ce résultat est souvent utilisé pour montrer qu'une fonction f n’admet pas de limite en a. Il
suffit pour cela d’exhiber une suite convergeant vers a dont I'image par f ne converge pas, ou deux suites convergeant
vers a dont les images par f ont des limites distinctes.

Exemple 17 La fonction sinus n’a pas de limite en +00. o -1
A ——
T ~— ™
En effet, lim nr= lim (2n7r + 7) =400, mais lim sin(nm)=0#1= lim sin (27’L7T + 7).
n—+0 n—+0m 2 n—+o0 n—+w 2

Théorémes d’existence de limite

Les résultats précédents permettent seulement de manipuler des limites dont on connait a priori ’existence. Les
théorémes qui suivent énoncent justement des conditions suffisantes pour établir 'EXISTENCE d’une limite.

Sl Théoréme d’encadrement/minoration/majoration

—— Théoréme 18
Soit f: D — R, m:D — R et M : D —> R trois fonctions, a € R adhérent a D et ¢ € R.
e Théoréme d’encadrement. Si lim m(z) = lim M(z) = £ et si m < f < M au voisinage de a, alors lim f
EXISTE et vaut £. o o !

o Théoréme de minoration. Si lim m(z) = 400 et si f = m au voisinage de a, alors lim f EXISTE et vaut +co.
a

r—a
¢ Théoréme de majoration. Si lim M (x) = —o0 et si f < M au voisinage de a, alors lim f EXISTE et vaut —oo.
r—a a
Démonstration. Cf. annexe A. ]

¥ ArTENTION ! ¥ Comme pour les suites, on veillera & ne pas confondre le théoréme d’encadrement avec le
théoréme de passage a la limite dans les inégalités.

Le théoréme d’encadrement est souvent utilisé sous I'une des formes suivantes, comme nous ’avions déja souligné
pour les suites.

—— Corollaire 19 — Théoréme d’encadrement bis

Soit f: D — R et ¢ : D —> R deux fonctions, a € R adhérent a D et £ € R. S'il existe un voisinage ¥ de a tel
que, pour tout z € ¥ n D, |f(x) — | < e(z) et si lim e(x) = 0, alors lim f(x) = 2.

Démonstration. Exercice. [ |
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— Corollaire 20 — Produit d’une fonction bornée et d’une fonction de limite nulle

Soit f,e : D —> R deux fonctions et a € R adhérent & D. Si f est bornée au voisinage de a et si lim e(z) = 0,

r—a

alors lim e(z) f(z) = 0.

Démonstration. Exercice. ™

Théoréme de la limite monotone

—— Théoréme 21 — Théoréme de la limite monotone
Soit a e R, be Ru {+w}, avec a < b, et f : [a,b] — R une fonction croissante.

(i) La limite 1ir+nf EXISTE et est FINIE. Précisément, f(a) < lirfl f.
a a
(ii) Pour tout c € Ja,b[, les limites lim f et ligrnf EXISTENT et sont FINIES. Précisément, lim f < f(¢) < lir+n I
c c c— c
(iii) La limite lilgn f EXISTE et est soit finie (si f est majorée au voisinage de b), soit égale & +oo (sinon).

On dispose de résultats analogues pour les formes d’intervalles autres que [a,b[ ainsi que pour les fonctions
décroissantes.

Démonstration. ... [ ]

En résumé :

’ Si f est monotone, elle posséde des limites A GAUCHE et A DROITE en tout point ou cela peut avoir un sens.

] Continuité d’une fonction

/BN Définition

D’un point de vue qualitatif, une fonction est continue sur un intervalle lorsque 'on peut tracer sa courbe repré-
sentative sans lever le crayon, autrement dit lorsque sa courbe représentative est d’un seul morceau. Ce point de vue
graphique traduit 'idée que, pour tout point a de l'intervalle de définition, lorsque ’abscisse x se rapproche de a, par
la droite ou par la gauche, f(z) se rapproche de f(a).

Dans ’ensemble de cette section, I désigne un intervalle de R contenant au moins deux points.

Définition 22 — Continuité
Soit f : I — R une fonction et a € I.

o La fonction f est dite continue en a lorsque lim f EXISTE. Le cas échéant, lim f = f(a), f étant définie en a.
a a

La continuité de f en a s’exprime donc par :

Ve>0, In>0, Veel, |z—a<n = |f(z)— f(a)<e.

|

|

| | i

|

i i ;
| a x | a x | a x
f est continue en a f n’est pas continue en a f n’est pas continue en a

e La fonction f définie sur I est dite continue sur I lorsqu’elle est continue en tout point de I.
On note €' (I,R) (ou €°(I,R)) I'ensemble des fonctions continues sur I & valeurs réelles.
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Exemple 23 La fonction valeur absolue || est continue sur R.
En effet, pour tout a € R, montrons que |-| est continue en a. Soit € > 0. Pour tout = € R, ||z| — |a|| < |z — al, d’aprés 'inégalité
triangulaire, ainsi pour n = ¢

VeeR, |z—a|l<n = |lz|—]a|]| <e.

Remarque 24
e Pour évoquer la continuité d’une fonction f en a, il est nécessaire que f soit définie en a.

o Une subtilité. Soit f : I —> R et J un intervalle inclus dans I. Si f est continue en tout point de J, alors la
restriction f|; est continue sur J. En revanche, la réciproque de cet énoncé est fausse. Par exemple, la restriction
de la fonction indicatrice Lo, 4o & [0, +00[ est continue sur [0, +co, alors que la fonction 1o o[ définie sur R
n’est pas continue en 0.

Définition 25 — Continuité a gauche/a droite en un point
Soit f : I — R une fonction et a € I. On suppose f définie au voisinage de a & gauche et a droite.

e La fonction f est dite continue a gauche en a lorsque f|;~]—u 4] €st continue en a, i.e. lorsque lim f = f(a).
P

e La fonction f est dite continue a droite en a lorsque f|;[q,+0[ €st continue en a, i.e. lorsque lir+nf = f(a).
a

f est continue en a
a droite,
mais pas a gauche.

f est continue en a
a gauche,
mais pas & droite.

Le résultat suivant est la version « continuité » du résultat analogue sur les limites d’une fonction (cf. théoréme 10).

Théoréme 26 — Caractérisation de la continuité a I'aide des continuités a gauche/a droite

Soit f : I —> R une fonction et a € I. On suppose f définie au voisinage de a & gauche et a droite. La fonction
f est continue en a si et seulement si elle est continue & gauche et a droite en a.

Y —

Exemple 27 La fonction partie entiére |-| est continue en tout point non entier, mais
seulement continue & droite en tout point entier. y = |z] -
En effet, examinons la continuité en un point entier n € Z. Pour tout z € [n,n + 1[, |z] = n,
ainsi lim+ |z] = n = |n] et || est donc continue & droite en n.
Au contraire, pour tout z € [n — 1,n[, |z] = n — 1, ainsi ILHELL [zl =n—1%n=|n|et|]n’est
donc pas continue & gauche en n.

*~—0

Prolongement par continuité en un point

—— Définition-théoréme 28 — Prolongement par continuité en un point

Soit ae I nRet f: I\{a} — R une fonction (NON définie en
a donc).

La fonction f est dite prolongeable par continuité en a lorsque
lim f existe ET EST FINIE. Le prolongement f de f obtenu en
a

posant f(a) = lim f est alors continue en a et appelé prolon-
a

gement par continuité en a de la fonction f.

Démonstration. 11 s’agit de montrer que f est continue en a, i.e. lim f = f(a). Puisque, par définition, f et f coincident sur

I\{a}, légalité lim f = f(a) s’écrit :
Ve>0, In>0, Veel\{a}, |z—a|<n = |[f(z)—f(a)| <e.

Or f est aussi définie en a et on peut évidemment remplacer I\{a} par I dans I’assertion précédente. [ |
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Remarque 29 On écrit souvent « Prolongeons f par continuité en posant f(a) = lim f » et 'on note encore f le
a

prolongement f de f (par souci de simplicité), bien qu’en toute rigueur, les fonctions f et f sont distinctes, puisqu’elles
n’ont pas le méme ensemble de définition.

Exemple 30

e La fonction x — x Inz n’est pas définie en 0, mais on peut la prolonger par continuité en ce point en lui donnant
la valeur 0 en 0, puisque lir% zlnx = 0, par croissance comparée.
xr—>

. sinx . . L . .
e La fonction x —> —— n’est pas définie en 0, mais on peut la prolonger par continuité en ce point en lui donnant
T

sinx
=1.

la valeur 1 en 0, puisque lin%
Tr—>

e Pour a > 0, 2% = e*"® — 0, ainsi en posant 0% = 0, on prolonge la fonction x — z®, a priori définie sur R¥,

x—0

en une fonction continue sur R;.

Continuité par opérations

Que ce soit en un point, en un point a droite ou & gauche, ou sur un intervalle, une combinaison linéaire et un
produit de fonctions continues sont continus. Il en va de méme pour I'inverse d’une fonction qui ne s’annule pas ainsi
que pour la composée de deux fonctions composables. Ces résultats découlent immédiatement des résultats analogues
concernant les limites de fonctions.

— Corollaire 31

% (I,R) est un sous-anneau de R, dont les éléments inversibles sont les fonctions qui ne s’annulent pas sur I.

— Corollaire 32

Les fonctions polynomiales sont continues sur R et les fractions rationnelles sont continues sur leurs ensembles
de définition respectifs.

2
Exemple 33 La fonction z — (ln (:v2 + el/m)) est définie et continue sur R* par opérations.

Exemple 34 Pour toutes fonctions f, g € €(I,R), les fonctions max{f, g} et min{f, g} sont continues sur I.

f+g+1f—4g f+g-1f -4

En effet, les fonctions max{f, g} = 3 3

et min{f, g} = sont continues par opérations sur [.

Caractérisation séquentielle de la continuité

Le théoréme suivant découle directement de son analogue pour les limites (cf. théoréme 16).

—— Théoréme 35 — Caractérisation séquentielle de la continuité en un point
Soit f : I — R une fonction et a € I. Les assertions suivantes sont équivalentes

(i) f est continue en a.

(ii) Pour toute suite (uy,),, .y de limite a & valeurs dans I, la suite (f(uy)), oy converge vers f(a).

On reconnaitra bien str le résultat mis en ceuvre pour I'étude des suites récurrentes u,+1 = f(uy,) : si la suite
(Un) ey converge vers £ et si f est continue en /, alors £ est un point fixe de f.

% En pratique ®  Ce résultat permet d’établir la discontinuité d’une fonction f en a. Il suffit pour cela d’exhiber
une suite convergeant vers a dont 'image par f ne converge pas vers f(a).

Exemple 36 La fonction f : x — cos(1/x) ne saurait étre prolongée par continuité en 0.

1
En effet, la suite définie par =, = — converge vers 0, tandis que celle définie par f(z,) = (—1)" ne converge pas.
nm
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La caractérisation séquentielle de la continuité combinée a celle de la densité de Q dans R permet d’établir la
caractérisation suivante des fonctions linéaires.

Exemple 37 — Equation fonctionnelle de Cauchy Les fonctions f € € (R, R) telles que

Ve,yeR, f(z+y) = f(x)+ fly)

sont les fonctions linéaires x — ax, avec a € R.

Théoremes fondamentaux de continuité globale

La continuité globale désigne la continuité sur un intervalle — par opposition a la continuité ponctuelle en un point.

Le théoréme des valeurs intermédiaires

—— Théoréme 38 — Théoréme des valeurs intermédiaires (TVI), version « existence d’un antécédent »

Soit a,b € R avec a < b. Si f € €([a,b],R), alors tout réel compris entre f(a) et f(b) posséde AU MOINS un
antécédent par f dans [a,].

Démonstration. Quitte a considérer —f, on peut supposer que f(a) < f(b). Procédons par dichotomie. On pose ag = a et
bo = b et 'on va construire par récurrence, a partir du segment [ag,bo] = [a,b], de nouveaux segments plus petits localisant un

antécédent de y € [f(a), f(b)]. Précisément, soit n € N et supposons que l'on ait déja construit des réels ao,...,an,bo,...,bn
tels que
. b—
(i) a=ar<...<an, bn<...<bg=0b et, pour tout k € [0,n], by —ar = Qka;
(ii) pour tout k € [0,n], f(ar) <y < f(bk).
an + by

On définit alors au rang n + 1 les réels an+1 et by,1+1 de la fagon suivante : on pose ¢, = et

2

Gnt1 = an €t buy1 =cn si fcn) 2y,
Gnt1 =Cn €t bnp1 =bn si flen) <.

Dans la mesure ol ¢, est le milieu du segment [an , by ], les réels any1 et bp41 satisfont les assertions (i) et (ii) au rang n + 1.
Les suites (an),cy €t (bn),cy ainsi construites sont adjacentes d’aprés (i) et possédent donc une limite finie commune

z € [a,b]. Il suffit alors de passer a la limite dans (ii), ce qui est loisible par continuité de f, pour obtenir f(z) < y < f(x) et

donc y = f(x). [ |

Remarque 39 Le théoréme des valeurs intermédiaires assure que si y est entre f(a) et f(b), alors ’équation f(z) =y
posséde au moins une solution. La dichotomie fournit méme un procédé effectif de résolution approchée permettant
d’obtenir un encadrement d’une solution aussi précis que ’on veut.

Exemple 40 Toute fonction polynomiale de degré impair s’annule sur R.

En effet, une fonction polynomiale de degré impaire posséde en —o0 et +o0 des limites infinies de signes opposés; elle prend
donc des valeurs positives et négatives. Comme elle est continue sur R, elle s’annule.

Le TVI s’énonce de fagon équivalente sous la forme suivante.

—— Théoréme 41 — Théoréme des valeurs intermédiaires, version « image d’un intervalle »

L’image d’un INTERVALLE par une fonction continue est un INTERVALLE.

Démonstration. Soit I un intervalle et f € €(I,R). Pour établir que f[I] est un intervalle, considérons u,v € f[I], avec u < v,
et montrons que [u,v] < f[I] (théoréme 23 du chapitre 9). Soit y € [u,v]. Par hypothése, il existe a,b € I tels que u = f(a) et
v = f(b). La version précédente du TVI assure alors 'existence de = entre a et b tel que y = f(z). En particulier, puisque I est
un intervalle, x € I et donc y = f(x) € f[I]. [ |
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Remarque 42 Le théoréme 41 implique clairement le théoréme 38. En effet, avec les notations du théoréme 38,

pour tout réel y entre f(a) et f(b), on a y € [min{f(a), f(b)},max{f(a), f(b)}] < f[[a,b]], puisque f[[a,b]] est un
intervalle (théoréme 23 du chapitre 9).

¥ ArTENTION ! ¥
o Il suffit d’un point de discontinuité pour que le TVI tombe en défaut.

o Le TVI affirme que 'image continue f[I] d’un intervalle I est également un intervalle, toutefois I et f[I] ne sont
pas a priori de méme nature.

intervalle N ,,,,7,.

|
| L

[ N ——

Un intervalle I ouvert et f[I] fermé. I semi-ouvert et f[I] ouvert.

Remarque 43 — (non essentielle)

e Le TVI est faux dans Q. Par exemple, la fonction f :  — 22 — 2 de Q dans Q est continue sur [0, 2] et vérifie
f(0) = =2 et f(2) = 2. Cependant, il n’existe pas de nombre rationnel z tel que f(z) = 0.

e On dit qu'une fonction f de R dans R satisfait la propriété des valeurs intermédiaires lorsque I'image par f de tout
intervalle est encore un intervalle. Le TVI énonce ainsi que les fonctions continues satisfont cette propriété. Mais
plus généralement, les fonctions dérivées (qui ne sont pas en général des fonctions continues) satisfont également
la propriété des valeurs intermédiaires (théoréme de Darboux, cf. exercice 19.26). De fagon plus baroque, on peut
aussi « construire » des fonctions discontinues en toute abscisse réelle et qui satisfont toujours cette propriété
des valeurs intermédiaires !

Le théoréme des bornes atteintes

—— Théoréme 44 — Théoréme des bornes atteintes
Les deux assertions suivantes sont vraies et équivalentes.
(i) Une fonction continue sur un SEGMENT y est bornée et atteint ses bornes, i.e. admet un minimum et un
maximum.

(ii) L’image d’un SEGMENT par une fonction continue est un SEGMENT. Précisément, si f est continue sur [a, b],

alors f[[a,b]] = [m, M], oﬁmzr[nig]lf et Mzrfn%))]{f.

Démonstration. L’équivalence entre (i) et (ii) est claire, via le TVI. Cf. annexe A pour une preuve de (i). [ |
Nous avons observé que la continuité ne préserve pas la forme d’un intervalle en gé- max f
néral. Toutefois, le théoréme précédent affirme qu’un segment est toujours transformé [a,b]
en un segment par une fonction continue. f[[a , b]]
. e . min f o
¥ ArTENTION ! ®  Sur un intervalle borné qui n’est pas un segment, une fonction [a,b]

continue n’a aucune raison d’étre bornée, e.g. la fonction inverse sur ]0,1].

Exemple 45 La fonction f : 2z — zlnz posséde un minimum sur [0, 1].

R. Basson — Lycée Fénelon Sainte-Marie — MPSI Année 2025-2026


https://www.fenelonsaintemarie.org

Limites et continuité des fonctions

Théoréme de la bijection continue, continuité d’une réciproque

Le TVI est un théoréme d’« existence » : il garantit I’existence d’un antécédent de y par f ou, de fagon équivalente,
d’une solution a I’équation y = f(z). Pour obtenir en plus l'unicité, une condition suffisante réside dans la stricte
monotonie de f.

Théoréme 46 — Théoréme de la bijection continue

e Si I est un INTERVALLE et f une fonction CONTINUE et STRICTEMENT MONOTONE sur [, alors f réalise une
bijection de I sur 'intervalle f[I].

e Dans ces conditions, la réciproque f~! est continue et strictement monotone, de méme sens de variation que
f, sur Uintervalle f[I].

Démonstration. Cf. annexe A.

Les graphes de f et f~! sont symétriques 'un de l’autre par rapport a la
premiére bissectrice. Si le graphe de f peut étre tracé sans que l'on ait a
lever le crayon, comment le graphe de f~! ne le serait-il pas ?

~

7

Remarque 47 Selon la nature de I et la monotonie de f, Pobtention de f[I] varie, e.g. pour deux réels a < b,

1) ‘ f(a) lim £ |

) ips i o

i { F

| 5 ' '5 ;
I=[a,b et fI1] = [f(a), f0). 1 =lablet S =Mimfif@].  1=]a,bf et f[I] =Jlim f;lim f.

Il existe bien stir d’autres versions selon que f est strictement croissante ou décroissante et définie ou non en a et b,
avec éventuellement a = —o0 ou b = +00.

Exemple 48

e La fonction exponentielle est définie comme la réciproque de la logarithme népérien. Elle est donc, & U'instar de
la fonction logarithme népérien, & valeurs dans R, continue et strictement croissante sur R.

e La fonction arctangente est définie comme la réciproque de la fonction tangente restreinte a ]fg , g[ Elle est

.z [, continue et strictement croissante sur R.

donc, & l'instar de la fonction tangente, a valeurs dans ]75 .

Exemple 49 — Fonctions puissances

e Soit n € N*. La fonction racine n® est définie comme la réciproque de la fonction puissance f : x — ™ restreinte
a Ry. Elle est donc, a I'instar de la fonction f|g, , & valeurs dans R, continue et strictement croissante sur R..

1/n

On note zY/™ ou {/x I'image de = par f~!. Le cas n = 2 correspond 4 la fonction racine carrée.

e Sin est un entier naturel impair, la fonction x — x™ réalise une bijection de R sur R, ce qui permet de définir
la racine ne sur R. Le cas n = 3 correspond & la racine cubique /-.

alnz

e Soit a € R. Plus généralement, la fonction puissance r — z¢ = e réalise une bijection de R* sur R¥ —

elle est continue et strictement croissante (resp. décroissante) si o > 0 (resp. a < 0). Sa bijection réciproque est

x — gt/

Remarque 50 — Limites aux bornes d’une réciproque  Soit f € €([a,b[,R), avec a < b. Si f est strictement
croissante et si lilfnf = ( € R, alors f réalise une bijection de [a,b[ sur [f(a),£[ et il semble évident que 11?1 f~t=mu

Notons alors que la justification de cette limite découle essentiellement du théoréme de la limite monotone.
En effet, f~! est croissante a I’instar de f, ainsi la limite li?l f ~! existe, d’apreés le théoréme de la limite monotone, notons 1a

L. Par composition de limite, il vient

' (f@)—L et f ' (f(x)=2—b,

z—b z—b

d’ott le résultat par unicité de la limite.
Ce raisonnement s’adapte bien sir & f strictement décroissante et avec un intervalle de départ d’un autre type.
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Terminons ce paragraphe avec une réciproque partielle du théoréme 62 du chapitre 3.

—— Théoréme 51 — Injectivité et stricte monotonie (bis)
Soit f € €(I,R). Si f est injective sur 'INTERVALLE I, alors f est strictement monotone sur I.

Démonstration. Cf. annexe A. [ ]

I Extension aux fonctions a valeurs complexes

Cette ultime section vise a étendre briévement les définitions et théorémes précédents aux fonctions de la variable
réelle & valeurs complexes.

Limites des fonctions

—— Définition 52 — Limite d’une fonction en un point

Soit f : D — C une fonction, a € R adhérent a D et £ € C. On dit que f admet £ pour limite en a lorsque la
fonction réelle | f — £| tend vers 0 en a. Dans ce contexte, le théoréme d’unicité de la limite reste valable, ce qui
autorise les notations lim f = ¢ et lim f(x) = £.

a r—a

¥ ArTENTION ! ¥ Comme pour les suites complexes, la notion de limite infinie n’a aucun sens pour les fonctions
a valeurs complexes.

On dispose naturellement de résultats similaires & ceux obtenus pour les suites complexes.

—— Théoréme 53
Soit f : D — C une fonction, a € R adhérent & D et £ € C. Si lim f = ¢, alors

(i) la fonction |f] tend vers |[¢| en a et, en particulier, la fonction f est bornée au voisinage de a;

(i) la fonction f tend vers £ en a.

—— Théoréme 54 — Caractérisation de la limite par les parties réelle et imaginaire

Soit f : D — C une fonction, a € R adhérent a D et £ € C. Les assertions suivantes sont équivalentes :

(i) lim f = ¢. (ii) limRe(f) =Re(¢) et limIm(f) = Im(¥).
a a a
Exemple 55
1 1
e La fonction f :z+—— 1Tz’ définie sur R, admet 0 pour limite en +o0, car zEr}rloo|f(:13)| = IEIEOO W =0

. e . L. . L CcoS &
e La fonction f: x —> — définie sur R*, n’a pas de limite en 0, puisque sa partie réelle z —> —— n’en a pas.
x x

Les notions de limites & gauche et a droite, ainsi que la caractérisation de la limite en termes de limite & gauche et
a droite, sont maintenues pour les fonctions complexes. La caractérisation séquentielle de la limite I’est également. Par
ailleurs, les théorémes opératoires sur les limites (addition, produit, quotient) restent valables, modulo la suppression
des colonnes liées aux cas +o0 des tables de la section 2.1.

En revanche, les théorémes cruciaux d’existence de limite de la section 3 (théorémes d’encadrement / majoration /
minoration et théoréme de la limite monotone) n’ont aucun sens dans le cas complexe, dans la mesure ou ces théorémes
s’appuient de facon essentielle sur la relation d’ordre de R.
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Fonctions continues

Dans I’ensemble de ce paragraphe, I désigne un intervalle de R contenant au moins deux points.

Définition 56 — Continuité

Soit f : I — C une fonction et a € I.

e La fonction f est dite continue en a lorsque lim f EXISTE. Le cas échéant, lim f = f(a), f étant définie en a.
a a

e La fonction f est dite continue sur I lorsqu’elle est continue en tout point de I. On note ¢'(I,C) (ou ¢°(1,C))
I’ensemble des fonctions continues sur I & valeurs complexes.

—— Théoréme 57 — Caractérisation de la continuité
Soit f : I — C une fonction. La fonction f est continue sur I si et seulement si Re(f) et Im(f) le sont.

Les notions de continuité & gauche et & droite, ainsi que la caractérisation de la continuité en termes de continuité &
gauche et & droite, sont aussi maintenues pour les fonctions complexes. La caractérisation séquentielle de la continuté
Pest également. Par ailleurs, les théorémes opératoires sur la continuité (combinaison linéaire, produit, quotient) restent
valables. En revanche, les théorémes fondamentaux de la section 5 sont réservés aux fonctions & valeurs réelles.

Exemple 58

e Les fonctions polynomiales et les fractions rationnelles & coefficients complexes sont continues sur leurs ensembles
de définition respectifs.

e Si f une fonction & valeurs complexes est continue sur I, il en va de méme de f, |f| et ef.

En effet, on procéde par opérations sur les fonctions réelles a partir des égalités

F=Re(f)—iIm(f), |fl=+/Re(f)Z2+Im(f)?> et e =e*W cos(Imf)+ie™ W) sin(Im f).

Continuité uniforme

La notion plus exigeante de continuité suivante sera exploitée au chapitre 25 pour la construction de l'intégrale.

— Définition 59 — Continuité uniforme
Une fonction f définie sur un intervalle I de R et & valeurs complexes est dite uniformément continue sur I
lorsque

Ve>0, >0, Y@y el’, lz—yl<n = |[fl2)-fly)l<e

Rappelons que la continuité de f sur I s’écrit
V.TGI, V€>07 EIT]>07 Vy€[, |17*y‘<77 g |f(x)7f(y)|<€

La différence entre les deux notions réside ainsi dans I'indépendance de la variable 1 de 'uniforme continuité vis-a-vis
de la variable z (n ne dépendant que de ¢) tandis que pour la continuité n dépend a priori de z.

—— Théoréme 60
Si une fonction f est uniformément continue sur un intervalle I, alors f est continue sur I.

% ArtEnTION ! ®  La réciproque du théoréme précédent est fausse en toute généralité, comme 1'établit I'exemple
suivant. On dispose néanmoins d’une réciproque partielle sur les segments (cf. théoréme 62).

Exemple 61 La fonction carrée est uniformément continue sur [0, 1], mais n’est pas uniformément continue sur R.

—— Théoréme 62 — Théoréme de Heine
Si I est un SEGMENT de R, alors toute fonction continue sur I est uniformément continue sur I.

Démonstration. Admis conformément au programme. Une preuve est donnée a ’annexe A. |
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] Fonctions lipschitziennes

—— Définition 63 — Fonction lipschitzienne

Soit I un intervalle et k un réel positif. Une fonction f : I — C est dite k-lipschitzienne! sur I lorsque

Ve,yel, |[f(z)— f(y)| < klz —yl.

Une fonction est dite lipschitzienne s'il existe un réel positif k& pour lequel elle est k-lipschitzienne.

Les variations des applications lipschitziennes sont donc contrdlées linéairement par celles de la variable. Géomé-
triquement, une fonction est k-lipschitzienne si les pentes des cordes de son graphe sont majorées en valeur absolue
par k.

Exemple 64
1. Toute fonction affine & — az + b est |a|-lipschitzienne.

2. La fonction valeur absolue est 1-lipschitzienne sur R.

En effet, pour tous z,y € R, ||z| — |y|| < |z — y| (inégalité triangulaire généralisée).

Exemple 65 La fonction inverse est 1-lipschitzienne sur [1,+o0[, mais n’est pas 1-lipschitzienne sur |0, +ool.

Y
1 1 |z — y| . - .
En effet, pour tous z,y € [1,+x[, |- — =| = ——= < |z — y|, puisque zy > 1. Pente supérieure a 1
T y Ty !
En revanche, |
1 1 1 1 Pente inférieure a 1
1-F|=1-2[=1>-=1—--| '
5 2 2 !
! 1
1
O 051 7 Yy x

—— Théoréme 66 — Lien entre continuité uniforme et lipschitziannité

Si une fonction f est lipschitzienne sur un intervalle I, alors f est uniformément continue sur I.

Démonstration. Si f est k-lipschitzienne sur I, avec k > 0, alors, pour tout € > 0, le réel n = €/k convient. |

X ArrenTion ! & La réciproque est fausse! Comme le montre le deuxiéme point de 1’exemple ci-apres.

Exemple 67
e La fonction sinus est uniformément continue sur R.

e La fonction racine carrée est uniformément continue sur R, , mais n’est pas lispschitzienne sur R .

Remarque 68 En revanche, une fonction peut étre lipschitzienne sans étre dérivable (cf. exemple 64).

Application aux suites u, 1 = f(u,). Considérons un intervalle I, une fonction f : I — R pour laquelle I est
stable et ug € I. Notons alors (un),-, 'unique suite définie par la relation u,.1 = f(u,), pour tout n € N. Sous les
hypothéses

e f posséde un unique point fixe ¢ dans I ;

e f est k-lipschitzienne avec k € [0,1[;
on démontre par récurrence sur n que

VneN, |u,—¢ <k ug—1.

On en déduit par encadrement que (u,),,~, converge vers ¢, car |k| < 1. Mieux, la suite (uy), -, converge rapidement
vers sa limite, au sens ou elle converge vers £ au moins aussi vite que la suite géométrique (k") -, tend vers 0.
2uy, + 2

définie par ug = 0 et u,11 = ———, pour tout n € N, converge vers \/§

Exemple 69 La suite (uy),-, 2+
> Up

t. Rudolf Otto Sigismund Lipschitz (1832 a Konigsberg — 1903 & Bonn) est un mathématicien allemand.
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Compétences a acqueérir

Obtention de limites par opérations : exercices 1 & 3.

Utilisation de la caractérisation séquentielle de la limite : exercice 4.

Manipulation de la notion de limite en revenant & la définition : exercices 11,12 et 44.
Etude des branches infinies d’une fonction : exercices 5 et 6.

Etude de la continuité par opérations : exercice 16.

Etude de la continuité par définition : exercices 15, 16 et 21 (voire 23 et 24).

Utilisation de la caractérisation séquentielle de la continuité : exercices 10, 17 et 28 a 31.

Utilisation du TVI : exercices 34 & 39.
Utilisation du théoréme des bornes atteintes : exercices 43 a 45.
Montrer qu’une fonction est (ou n’est pas) uniformément continue : exercices 48 a 50.

Exploiter la continuité uniforme d’une fonction : exercices 51 et 52

Quelques résultats classiques :

Continuité des fonctions max{f, g} et min{f, g} (exemple 34).
Equation fonctionnelle de Cauchy (exemple 37).
Annulation des fonctions polynomiales réelles de degré impair (exemple 40).

Un théoréme de point fixe pour les fonctions contractantes (exercice 20).

Un théoréme de point fixe pour les fonctions continues d’un segment dans lui-méme (exercice 35).
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Annexe

Démonstration du théoréeme 3.

(i) Par 'absurde, supposons que f admet deux limites £ et £’ distinctes. Il existe alors ¥; et ¥, des voisinages respectifs de ¢
et ¢ disjoints (point (ii) du théoréme 25 du chapitre 9) et, par hypothése, il existe ¥, et ¥, deux voisinages de a tels que

VeeYaonD, f(x)e¥ et Vze ¥, nD, f(x)e V.
OrDn¥en¥ # @ et, pour tout z€ D ¥y ¥y, f(x) € ¥ n ¥y = . Contradiction!

(ii) Supposons que a € D, i.e. f est définie en a, et que f posséde une limite en a, notée £.
e Par ’absurde supposons ¢ = +00. Il existe alors, par hypothése, un voisinage 7, de a tel que, pour tout x € ¥, n D,
f(x)e]f(a),+o[. Pour z = a € ¥, n D, on aurait f(a) € |f(a),+o0[, ce qui est contradictoire!
On établit de méme que £ = —o0 est exclu. Ainsi £ = R.
e Montrons que ¢ = f(a). Soit £ > 0, il existe, par hypothése, un voisinage ¥, de a tel que, pour tout x € ¥, n D,
f(z) € ¢ —e,€ + ¢[. En particulier, pour = = a, |f(a) — £| < . Nécessairement ¢ = f(a).

Démonstration du théoréme 10. Traitons le point (i).
e Supposons que lim f = £. D’aprés le point (ii) du théoréeme 3, f(a) = £. En outre, soit ¥ un voisinage de /.
Par hypotheése, il existe un voisinage ¥, de a tel que, pour tout = € ¥, n D, f(z) € ¥. A fortiori, pour tout = €
Yo 0D )00, al, f(x) € ¥, soit lim f = £, et de méme hl}’lf = /.
e Réciproquement, supposons que lim f = liin f = f(a) = £. Nécessairement £ € R. Soit € > 0, par hypothéses
a— a
x il existe n~ > 0 tel que, pour tout x € D, a—n <z <a = |f(x)—{|<¢e;
x il existe n* > 0 tel que, pour tout z € D, a<z<a+nt = |f(x)—{] <¢;
or |f(a) —£] = 0 < ¢, ainsi, en posant n = min{n_, n+} on a 1 > 0 et, pour tout « € D, 'implication
lz—al<n = [f(z) -4 <e,

soit lim f = /.

Démonstration du théoréme 14. Contentons-nous de prouver (ii). Posons ¢ = lim f.
e Si{ = +o00, il existe un voisinage ¥, de a tel que, pour tout x € D n ¥, f(x) € [m, +ool.
e Si /e R, sachant que £ —m > 0 par hypothése, il existe un voisinage ¥, de a tel que
VeeVonD, flx)ell—(L—-—m), L+ ({—m)]c]|m,+ool.

Dans les deux cas, f > m au voisinage de a.

Démonstration du théoréme 16.
e (i) = (ii). Supposons que lim f = £. Soit (un), oy une suite de limite a a valeurs dans D. Soit #; un voisinage de £. Par

hypothése, il existe un voisinage ¥, de a tel que, pour tout x € ¥, N D, f(x) € ¥. Par ailleurs, il existe un rang N tel que,
pour tout n = N, u, € ¥, Aol u, € ¥, et finalement f(un) € ¥%.

e (ii) = (i). Traitons le cas particulier, a, £ € R. Les autres cas étant similaires. Contraposons en supposant que f n’admet
pas £ pour limite en a. Il existe donc €9 > 0 tel que

Vn>0, 3JzeD, |z—a|<n et |f(z)—{ = eo.

. . 1 1
Pour tout n € N*| 'assertion précédente fournit pour = = un réel u,, € D tel que |u, —a| < — et |f(un) —£] = €o. La
n n

suite (un), 5, ainsi construite est a valeurs dans D et converge vers a, tandis que la suite (f(un)), 5, n’admet pas £ pour
limite.

Démonstration du théoréeme 18.

1. Supposons que limm = lim M = ¢ et que m < f < M au voisinage de a. Soit € > 0,

e il existe un voisinage ¥, de a tel que, pour tout z € ¥, n D, m(x) < f(z) < M(x);
e il existe un voisinage ¥, de a tel que, pour tout x € ¥, n D, £ —e < m(x);
e il existe un voisinage ¥, de a tel que, pour tout x € ¥, n D, M(z) <{+¢;
alors ¥, n ¥, n ¥ est un voisinage de a et, pour tout x € ¥, n ¥, n ¥.' n D, on a I'implication
L—e<m(z) < fle) S M(x)<l+e = |f(z)—{ <e,
soit lim f = /.
2. Supposons que limm = 400 et que f = m au voisinage de a. Soit A > 0,
a
e il existe un voisinage ¥, de a tel que, pour tout z € ¥, N D, f(x) = m(z);
e il existe un voisinage ¥, de a tel que, pour tout x € ¥, n D, m(z) > A;
alors ¥, N ¥, est un voisinage de a et, pour tout z € ¥, n ¥, n D, f(z) = m(z) > A, soit lim f = +c0.
a
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Limites et continuité des fonctions

Démonstration 1 du point (i) du théoréme 44 (via le théoréme de Bolzano-Weierstrass).
Montrons que f admet une borne supérieure M sur [a,b] et qu’il existe x € [a,b] tel que M = f(x).

e Par l'absurde, supposons f non majorée sur [a,b], i.e.
VAeR, 3zela,b], f[f(z)> A
On peut alors construire une suite (), d’éléments de [a,b] telle que :
VneN, f(z,)=n. (%)

Cette suite étant bornée par construction, on peut en extraire une sous-suite convergente (IV’(“))neN dont la limite a est
dans [a,b] (théoréme de Bolzano-Weierstrass). Comme f est continue en «, on en déduit que ( f (m‘P(")))neN est une suite
convergente donc bornée, ce qui est en contradiction avec la relation (). Par conséquent, f est majorée sur [a,b].
e Raisonnons a nouveau par l’absurde, en supposant que M = sup f ne soit pas atteint, i.e.
[a,b]

Vz e [a,b], f(z)+# M.

La fonction g :  — est alors définie et continue sur[a, b], comme inverse d’une fonction continue qui ne s’annule

1
M—f(z)
pas. Or, on a vu dans la premiére partie de la démonstration que toute application continue sur le segement [a,b] est

majorée. Soit donc A un majorant (strictement positif) de g. On a
Voela,b], g(z) <A
et donc
1
Vz € [a,b], flz)<M-— 1
1
Le réel M — — est alors un majorant de f strictement plus petit que M, ce qui contredit le fait que M est la borne
supérieure de f sur [a,b]. Il existe donc z € [a,b] tel que M = f(x).
En appliquant ce qui précéde & —f, on en déduit que f posséde aussi une borne inférieure et que celle-ci est atteinte.

Démonstration 2 du point (i) du théoréme 44 (par dichotomie). Nous nous contentons la aussi de montrer que f
posséde un maximum (il suffit de considérer —f pour le minimum). Nous donnons une seconde démonstration par dichotomie
et introduisons pour cela la notion suivante

—— Définition 70 — Intervalle dominant pour une fonction (HP)

Soit f : [a,b] — R une fonction. Un intervalle [c,d] < [a,b] est dit dominant pour f lorsqu’il vérifie

Veela,bl, 3yele,d, fy)=>f().

On dispose alors du lemme suivant

Lemme 71

Soit f : [a,b] — R une fonction. Si lintervalle [c,d] < [a, b] est dominant pour f et si e € [¢, d], alors 'un des intervalles
[c,e] ou [e,d] est dominant pour f.

Démonstration. Si [c, e] est dominant pour f, c’est gagné. Sinon, il existe zo € [a, b] tel que, pour tout y € [c, €], f(zo) > f(y).
Or, puisque [c, d] est dominant pour f, il existe yo € [c,d] tel que f(yo) = f(xo) et donc yo € [e,d]. On en déduit le caractére
dominant de [e,d]. En effet, soit z € [a,b]. Il existe y € [c¢,d] tel que f(y) = f(z). Soit y € [e,d], c’est réglé, soit y € [c, €],
auquel cas f(y) < f(zo) < f(¥o)- n

On suppose f continue sur le segment [a,b]. On part de ap = a et by = b. Soit n € N, supposons que l'on ait déja construit
des réels ag, ..., an,bo,...,b, tels que

. h—
(i) a=ar<...<an, bp<...<by=0b et, pour tout k€ [0,n], bp —ar = 2ka;
(ii) pour tout k € [0,n], [ak ,bk] est dominant pour f.
n bn
On définit alors au rang n + 1 les réels an+1 et b,11 de la fagon suivante : on pose ¢, = n 1+ 0n et

2

Gnt1 = an €t  bpy1 =cp si[an,cn] est dominant pour f;
ant+1 =Cn et bpy1 = by, sinon.

Dans la mesure ou ¢, est le milieu du segment [an ,bn] et en vertu du lemme précédent, les réels an11 et bn41 satisfont les
assertions (i) et (ii) au rang n + 1.

Les suites (an), oy €t (bn), oy 2insi construites sont adjacentes d’aprés (i) et possédent donc une limite finie commune
¢ € [a,b]. Montrons que f(c) est le maximum de f sur [a,b]. Soit = € [a,b]. Pour tout n € N, puisque [an , b, ] est dominant
pour f, il existe xn € [an ,bn] tel que f(xn) = f(x). Or, par encadrement, (), converge vers c et, par continuité de f,
(f(xn)),ey converge vers f(c), qui vérifie, par passage a la limite, f(c) > f(x).
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Limites et continuité des fonctions

Démonstration du théoréme 46 (HP).
e D’aprés le TVI, f[I] est un intervalle. En outre, par stricte monotonie, f est injective sur I et donc bijective de I sur f[I].

e Stricte monotonie. Supposons [ strictement croissante sur I ('autre cas est similaire) et montrons qu’il en va de méme
de 71 sur f[I].
Soit y1,y2 € f[I] avec y1 < y2. Par injectivité de £, f~(y1) # £~ (y2) et, par Pabsurde, si f~*(y1) > f~'(y2), alors, par
stricte monotonie de f, y; = f(ffl(yl)) > f(ffl(yz)) = y2 — absurde! Ainsi f7'(y1) < f'(y2), comme souhaité.

e Continuité. Montrons que f~! est continue sur .J, en supposant par exemple f strictement croissante sur I (quitte &
changer f en —f).
Soit yo € J. Il existe zo € I tel que y = f(x0). Supposons que z n’est pas une borne de I. Soit € > 0 tel que [zo —€,2z0 + €] <
I. Posons y1 = f(zo —¢€) et y2 = f(xo —€). On a donc y1,y2 € J et y1 < yo < y2, par stricte croissance de f, ce qui permet
de définir 7 = min{yo — y1,y2 — yo} > 0. On a alors l'assertion

Vyeld, ly—wl<n = p<y<y = zo—e<f (y)<zote <= |[f)—Ff W) <e

par stricte croissance de f~' sur J, ce qui exprime la continuité de f=* en ypo.

Si g est une borne de U'intervalle I, on modifie légérement la démonstration, en considérant [z ,zo + €] ou [zo — €, z0] au
lieu de [zo — €, x0 + €].

Démonstration du théoréme 51 (HP). Fixons deux points a,b € I quelconques pour lesquels a < b.

Par injectivité de f, f(a) # f(b), ainsi quitte & remplacer f par —f, qui est tout autant continue et injective que f, nous
pouvons supposer f(a) < f(b) sans perte de généralité. Montrons alors que f est strictement croissante.

Soit z,y € I avec x < y, & nouveau par injectivité de f, f(x) # f(y), mais rien ne garantit a priori que f(z) < f(y). En
d’autres termes, rien ne garantit que f ordonne f(z) et f(y) de la méme maniére qu’elle ordonne f(a) et f(b).

Lorsque A croit de 0 & 1, le réel (1 — N)a + Az varie de a a z le long du segment qui joint ces deux abscisses, tandis que
(1 = X)b+ Ay varie de b a y. En outre, I étant un intervalle, les réels ainsi obtenus sont tous des éléments de I, ensemble de
définition de f. Cette observation justifie la bonne définition de la fonction

p:A— fF(1=XNb+ X y) — fF(1 —Na+ A\z)

de [0, 1] dans R. Remarquons alors que
e ©(0) = f(b) — f(a) > 0 et nous cherchons le signe de p(1) = f(y) — f(z);
e  est continue sur [0,1] car f lest sur I;
e ¢ ne s’annule pas sur [0, 1]. En effet, pour tout A € [0, 1], si ¢(A) = 0, alors par injectivité de f
(I-=XNa+iz=(1-Ab+ My
ce qui équivaut a
1= b—a)+_ A —x)=0
(1=X)(b—a)+, (y— =)
>0 >0 =0 >0
et impose donc A = 1 — A\ = 0, ce qui est absurde.

Par conséquent, le TVI garantit que ¢ est strictement positive sur [0, 1], et en particulier ¢(1) = f(y) — f(z) > 0.

Démonstration du théoréme 62.
Soit f une application continue sur un segment I. Supposons par l’absurde que f ne soit pas uniformément continue sur I,
i.€e.
3>0, V>0, Iz el’, |z—yl<n et |f(x)—[fy)|>e

Considérons un tel € > 0. Pour tout n = 27", avec n € N, on peut donc choisir (Zn,yn) € I? tel que

1

o et 1f@) = f) >

Les suites (), oy €t (Yn),cn 2insi construites vérifient

lim (zp, —yn) =0 et VneN, |f(zn)— f(yn)| =e. (%)

n— -+

L’intervalle I étant borné, la suite (zn), .y est bornée et on peut donc en extraire une sous-suite (IV’(“))%N convergeant, vers
un élément o (théoréme de Bolzano-Weierstrass), et ce dernier appartient & I puisque I est un intervalle fermé. Comme

VREN, Yom) = Tom) + (Vo) = o))

on a aussi liIJIrl Yo(n) = @, par somme de limites. Or, 'application f étant continue en «, on en déduit
n——+0o0

im (f(zem) = flvemm)) = lim fzoe) = Hm f(yem) = fle) = fla) =0,

n—+0o0 n—+00

ce qui contredit ().
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