
14 Anneau des polynômes
à une indéterminée

Dans l’ensemble de ce chapitre, K désigne l’un des corps R ou C †.

1 Ensemble des polynômes à coefficients dans K

1.1 Définition
Un polynôme est essentiellement défini par la donnée de la liste de ses coefficients. À titre d’exemple, le polynôme

4X3 ´ 2X ` 1 est entièrement décrit par la liste p1,´2, 0, 4q. Une telle liste peut évidemment être arbitrairement
longue, en lien avec le degré du polynôme considéré, mais aussi artificiellement complétée par des 0. Ainsi la liste
p1,´2, 0, 4, 0, 0q représente aussi le polynôme 4X3 ´ 2X ` 1 “ 0X5 ` 0X4 ` 4X3 ` 0X2 ´ 2X ` 1. Ces brèves
observations conduisent naturellement à la définition suivante.

• On appelle polynôme (à une indéterminée) à coefficients dans K toute suite pakqkPN d’éléments de K nulle à
partir d’un certain rang‡, i.e. vérifiant

Dn P N, @k ą n, ak “ 0.

L’ensemble des polynômes à coefficients dans K est noté KrXs si l’on choisit de noter X l’indéterminée (notion
qui sera précisée à la définition 7).

• Pour tout k P N, le terme ak de la suite pakqkPN est appelé coefficient (du terme) de degré k du polynôme.

Définition 1 – Polynôme à une indéterminée à coefficients dans K

Conformément à cette définition, un polynôme est une suite de la forme pa0, a1, . . . , an, 0, 0, 0, . . .q à coefficients
dans K. Nous pourrons bientôt noter anXn`an´1X

n´1` . . .`a1X`a0 une telle suite, notation qui nécessite toutefois
d’être légitimée par ce qui va suivre. Il est cependant opportun d’avoir cet objectif en tête afin de comprendre les
définitions qui vont suivre.

Quoi que l’on pense de la définition abstraite précédente, cette dernière a au moins le mérite de rendre trivial le
résultat suivant. Son analogue pour les fonctions polynomiales étant autrement plus délicat à établir.

Deux polynômes sont égaux si et seulement si leurs coefficients le sont.
Théorème 2 – Identification des coefficients

On appelle polynôme constant de KrXs tout polynôme pλ, 0, 0, . . .q, avec λ P K. Un tel polynôme sera simplement
noté λ. Avec cette notation, le polynôme 0 est appelé polynôme nul.

Définition 3 – Polynôme constant, polynôme nul

1.2 Structure d’anneau
En vue de définir une addition et une multiplication sur KrXs, nous aimerions pouvoir écrire

˜

n
ÿ

k“0

akX
k

¸

`

˜

n
ÿ

k“0

bkX
k

¸

“

n
ÿ

k“0

pak ` bkqXk

et
˜

n
ÿ

i“0

aiX
i

¸

ˆ

˜

n
ÿ

j“0

bjX
j

¸

“
ÿ

0ďi,jďn

aibjX
i`j “

2n
ÿ

k“0

On regroupe les termes
de même degré k

hkkkkkkkkkkikkkkkkkkkkj

ˆ

ÿ

0ďi,jďn
i`j“k

aibj

˙

Xk “

2n
ÿ

k“0

On élimine j
via la relation j“k´i
hkkkkkkkkkikkkkkkkkkj

˜

k
ÿ

i“0

aibk´i

¸

Xk ,

†. À l’exception notable de l’exemple 23, du point (i) du théorème 27 et du théorème 34, l’ensemble des définitions et résultats de ce
chapitre restent valables sur un corps K quelconque. Plus généralement, les définitions et théorèmes de la section 1 s’étendent au cas où le
corps K est remplacé par un anneau commutatif quelconque.

‡. Une telle suite est dite presque nulle.
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2 Anneau des polynômes à une indéterminée

avec, par convention, ai “ bi “ 0, pour tout i ą n, où l’on reconnaîtra les règles usuelles du calcul littéral. Ces
aspirations conduisent aux définitions suivantes.

Somme et produit de deux polynômes Si P “ pa0, a1, . . . , ap, 0, 0, 0, . . .q et Q “ pb0, b1, . . . , bq, 0, 0, 0, . . .q sont
deux polynômes, il est clair que la suite pak ` bkqkPN est nulle à partir du rang maxtp, qu ` 1 et définit donc un
polynôme. La situation, moins immédiate pour le produit, est clarifiée par le lemme suivant.

• On appelle produit de Cauchy† de deux suites pakqkPN et pbkqkPN d’éléments de K la suite pckqkPN définie par

@k P N, ck “

k
ÿ

i“0

aibk´i “
ÿ

0ďi,jďk
i`j“k

aibj (1)

• Si pakqkPN et pbkqkPN sont deux suites presque nulles d’éléments de K, alors leur produit de Cauchy pckqkPN
l’est aussi. Précisément, on dispose de l’implication

p@ k ą p, ak “ 0 et @ k ą q, bk “ 0q ùñ p@ k ą p ` q, ck “ 0 et cp`q “ apbqq.

Lemme 4 – Produit de Cauchy de deux suites presque nulles

Démonstration. ... ■

Nous sommes alors en mesure de définir une structure d’anneau sur l’ensemble KrXs des polynômes à une indé-
terminée à coefficients dans K.

Soit P “ pakqkPN et Q “ pbkqkPN deux éléments de KrXs.
• On appelle somme de P et Q, notée P ` Q, le polynôme pak ` bkqkPN.

• On appelle produit de P et Q, noté P ˆ Q ou PQ, le polynôme

˜

k
ÿ

i“0

aibk´i

¸

kPN

. En particulier, pour tout

λ P K, λP est le polynôme pλakqkPN.
Ces lois d’addition et de multiplication munissent l’ensemble KrXs d’une structure d’anneau commutatif.

Définition-théorème 5 – Structure d’anneau sur KrXs

Démonstration. La remarque liminaire de ce paragraphe montre que l’addition de deux polynômes définit une loi de composition interne
sur KrXs, qui est alors clairement un sous-groupe du groupe

`

KN,`
˘

, dont l’élément neutre est le polynôme nul 0. Par ailleurs, le lemme
4 montre que la multiplication de deux polynômes définit aussi une loi de composition interne sur KrXs et cette loi vérifie :

• Commutativité. La commutativité du produit découle de la symétrie en les coefficients ai et bj de la formule (1) du produit de
Cauchy de deux suites.

• Associativité. Soit P “ pakqkPN, Q “ pbkqkPN et R “ pckqkPN trois éléments de KrXs. Le coefficient de degré n P N de P pQRq est

ÿ

i`l“n

ai

¨

˝

ÿ

j`k“l

bjck

˛

‚“
ÿ

i`j`k“n

aibjck,

et l’on déduit par symétrie de cette expression, puis commutativité du produit, que

P pQRq “ RpPQq “ pPQqR.

• Élément neutre. Vérifions que 1 “ p1, 0, 0, . . .q “
`

δk,0
˘

kPN est l’élément neutre pour le produit.
Pour tout P “ pakqkPN P KrXs, le coefficient de degré k P N de P ˆ 1 est

k
ÿ

i“0

aiδk´i,0 “ akδ0,0 “ ak.

• Distributivité sur `. Soit P “ pakqkPN, Q “ pbkqkPN et R “ pckqkPN trois éléments de KrXs. Le coefficient de degré k P N de P pQ`Rq

est
k

ÿ

i“0

aipbk´i ` ck´iq “

k
ÿ

i“0

aibk´i `

k
ÿ

i“0

aick´i,

et l’on reconnaît la somme des coefficients de degré k de PQ et PR, ce qui établit P pQ ` Rq “ PQ ` PR.
■

Attention ! L’anneau KrXs n’est pas un sous-anneau de l’anneau KN des suites, la multiplication des
polynômes étant définie via le produit de Cauchy des suites et non la multiplication terme à terme des suites.

†. Augustin Louis, baron Cauchy (1789 à Paris – 1857 à Sceaux) est un mathématicien français, membre de l’Académie des sciences et
professeur à l’École polytechnique. Il introduit en analyse les fonctions holomorphes (fonction de la variable complexe) et des critères de
convergence des suites et des séries entières. Ses travaux sur les permutations sont précurseurs de la théorie des groupes.

R. Basson – Lycée Fénelon Sainte-Marie – MPSI Année 2025–2026

https://www.fenelonsaintemarie.org


Anneau des polynômes à une indéterminée 3

La structure d’anneau de KrXs permet alors de considérer les puissances d’un polynôme et on dispose bien sûr des
règles de calcul classiques valables dans un anneau (théorèmes 18 et 59 du chapitre 11). En particulier, la formule du
binôme et l’identité de Bernoulli s’appliquent sans restriction.

Pour tous P,Q P KrXs et n P N, pP ` Qq
n

“

n
ÿ

k“0

ˆ

n

k

˙

P kQn´k et Pn ´ Qn “ pP ´ Qq

n´1
ÿ

k“0

P kQn´k´1.

Corollaire 6 – Formule du binôme, Identité de Bernoulli

1.3 Notation définitive
Le temps de la notation polynomiale est enfin arrivé ! Désormais, grâce au théorème suivant, les polynômes seront

toujours écrits selon notre conception intuitive initiale. Conformément au programme, il n’est pas illégitime d’oublier
la construction qui précède. Le point de vue des suites presque nulles nous aura permis de définir proprement le monde
des polynômes formels à une indéterminée – qualifiés ainsi pour les distinguer des fonctions polynomiales, sur lesquelles
nous reviendrons plus tard.

Dans KrXs, on choisit de noter X le polynôme p0, 1, 0, 0, . . .q, appelé indéterminée (formelle).
• Pour tout k P N, Xk “ p0, . . . , 0

loomoon

k zéros

, 1, 0, 0, . . .q “ pδj,kqjPN, polynôme pour lequel l’unique coefficient non nul

vaut 1 et est en position « degré k », e.g.

1 “ X0 “ p1, 0, 0, . . .q, X “ p0, 1, 0, 0, . . .q, X2 “ p0, 0, 1, 0, 0, . . .q, X3 “ p0, 0, 0, 1, 0, 0, . . .q, . . .

• On appelle monôme tout polynôme de la forme λXk, où λ P K et k P N.

• Pour tout polynôme P “ pa0, . . . , an, 0, 0, . . .q, on peut alors écrire P “

n
ÿ

k“0

akX
k, écriture qui sous-entend

que tous les coefficients de P sont nuls à partir du rang n ` 1.

Définition-théorème 7 – Notation polynomiale

Démonstration. L’égalité Xk
“ p0, . . . , 0, 1, 0, 0, . . .q, pour tout k P N, s’obtient par récurrence sur k P N. ■

Remarque 8 L’indéterminée formelle X n’est pas une variable (au sens fonctionnel), mais un polynôme bien précis,
à partir duquel il est possible d’écrire les autres éléments de KrXs. En particulier, l’indéterminée formelle ne doit pas
être quantifiée et ne peut pas servir d’inconnue pour résoudre une équation.

Attention ! Attention, l’écriture P “

n
ÿ

k“0

akX
k ne sous-entend en aucune façon que an ‰ 0 !

Il convient donc in fine de retenir que les définitions de la somme et du produit de deux polynômes données à la
définition-théorème 5 s’énoncent, pour tous m,n P N,

m
ÿ

k“0

akX
k `

n
ÿ

k“0

bkX
k “

maxtm,nu
ÿ

k“0

pak ` bkqXk et
m
ÿ

k“0

akX
k ˆ

n
ÿ

k“0

bkX
k “

m`n
ÿ

k“0

˜

k
ÿ

i“0

aibk´i

¸

Xk “
ÿ

0ďiďm
0ďjďn

aibjX
i`j .

où, par convention, les ak (resp. bk) ne figurant pas dans l’écriture de
m
ÿ

k“0

akX
k (resp.

n
ÿ

k“0

bkX
k) sont nuls.

Remarque 9 Pour un polynôme P “ pakqkPN à coefficients dans K, on pourra aussi écrire P “

`8
ÿ

k“0

akX
k et cette

écriture est unique. En dépit des apparences, une telle somme est finie, la suite pakqkPN des coefficients de P étant
nulle à partir d’un certain rang. Cette notation « infinie » est parfois avantageuse pour la rédaction. Les formules pour
la somme et le produit de deux polynômes rappelées précédemment se réécrivent alors

`8
ÿ

k“0

akX
k `

`8
ÿ

k“0

bkX
k “

`8
ÿ

k“0

pak ` bkqXk et
`8
ÿ

k“0

akX
k ˆ

`8
ÿ

k“0

bkX
k “

`8
ÿ

k“0

˜

k
ÿ

i“0

aibk´i

¸

Xk “

`8
ÿ

i“0

`8
ÿ

j“0

aibjX
i`j .
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4 Anneau des polynômes à une indéterminée

Terminons cette première partie avec une application classique du théorème 2 d’identification des coefficients de
polynômes.

Application 10 – Formule de Vandermonde Pour tout n P N,
n

ÿ

k“0

ˆ

n

k

˙2

“

ˆ

2n

n

˙

.

2 Degré d’un polynôme

Pour un polynôme P “

`8
ÿ

k“0

akX
k non nul, l’ensemble tk P N | ak ‰ 0u est une partie non vide et majorée de N

(la suite pakqkPN des coefficients étant nulle à partir d’un certain rang), il admet donc un plus grand élément, ce qui
légitime la définition suivante.

• Soit P “

`8
ÿ

k“0

akX
k un polynôme à coefficients dans K. On définit le degré de P , noté degpP q, par

degpP q “

"

maxtk P N | ak ‰ 0u si P ‰ 0
´8 si P “ 0.

• Lorsque P est non nul, le coefficient adegP de P est appelé son coefficient dominant et, lorsque ce dernier est
égal à 1, le polynôme P est dit unitaire.

• L’ensemble des polynômes à coefficients dans K de degré inférieur ou égal à n est noté KnrXs.

Définition 11 – Degré d’un polynôme, coefficient dominant, polynôme unitaire

Exemple 12
• Le polynôme P “ 3X2 ´

?
5X ` 2 est de degré 2 et a pour coefficient dominant 3. Ainsi P P R2rXs, mais on a

aussi P P R155rXs par exemple, puisque degP ď 155.
• Le polynôme X3 ´ 3X ` 2 est unitaire.

Remarque 13
• Un polynôme

n
ÿ

k“0

akX
k est de degré inférieur ou égal à n, et est de degré n si et seulement si an ‰ 0.

• Un polynôme est constant si et seulement s’il est nul ou de degré nul. Ainsi K0rXs s’identifie à K et on dispose
des caractérisations

P “ 0 ðñ degP “ ´8 et P P K˚ ðñ degP “ 0.

Soit P,Q P KrXs et λ P K.
(i) Degré d’une somme. degpP ` Qq ď maxtdegP,degQu, avec égalité lorsque degP ‰ degQ.
(ii) Degré d’un produit. degpPQq “ degP ` degQ. En particulier, si λ ‰ 0, degpλP q “ degP .

Théorème 14 – Degrés d’une somme et d’un produit

Démonstration. ... ■

Exemple 15 L’inégalité pour la somme est due à la situation suivante : si P “ X2 ` 1 et Q “ ´X2 ` X ´ 2, alors
P ` Q “ X ´ 1 et degpP ` Qq “ 1 ă maxtdegP,degQu “ 2.

Remarque 16
• Pour tous λ, µ P K et P,Q P KrXs, degpλP ` µQq ď maxtdegP,degQu.
• D’après le deuxième point du lemme 4, le coefficient dominant d’un produit de polynômes est le produit des

coefficients dominants des facteurs du produit.

Pour tout n P N, KnrXs est stable par combinaison linéaire. En particulier, KnrXs est un sous-groupe de KrXs.
Corollaire 17

Attention ! En revanche, KnrXs n’est pas un sous-anneau de KrXs, dès que n ě 1. En effet, pXnq
2

R KnrXs.
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Anneau des polynômes à une indéterminée 5

L’anneau commutatif KrXs est intègre, i.e. vérifie l’assertion

@P,Q P KrXs, PQ “ 0 ùñ pP “ 0 ou Q “ 0q.

Corollaire 18 – Intégrité de KrXs

Démonstration. Soit P,Q P KrXs tels que PQ “ 0. Alors degP ` degQ “ degpPQq “ ´8 et nécessairement degP “ ´8 ou
degQ “ ´8, i.e. P “ 0 ou Q “ 0. ■

Remarque 19 Cette propriété serait nettement plus difficile à prouver si l’on travaillait avec des fonctions polynomiales
et non avec des polynômes. En effet, si P pxqQpxq “ 0, pour tout x P R, alors en tout point l’une des fonctions P ou
Q s’annule, mais rien ne nous garantit alors que l’une des deux s’annule tout le temps.

Les éléments inversibles de l’anneau KrXs sont les polynômes de degré 0, i.e. UpKrXsq “ K˚.
Corollaire 20 – Inversibles de KrXs

Démonstration.
• Si P est un polynôme de degré 0, i.e. une constante non nulle λ, alors λ´1 (inverse de λ dans K) est l’inverse de P .
• Soit P P UpKrXsq, il existe alors par définition Q P KrXs tel que PQ “ 1, d’où

0 “ deg 1 “ degpPQq “ degP ` degQ,

ce qui impose degP “ 0, puisque degP et degQ sont deux éléments de N Y t´8u. ■

3 Composition, dérivation et conjugaison des polynômes

Soit P “

`8
ÿ

k“0

akX
k et Q deux éléments de KrXs.

• Définition. On appelle composée de Q suivie de P , notée P ˝ Q ou P pQq, le polynôme

P ˝ Q “

`8
ÿ

k“0

akQ
k.

• Degré d’une composée. Si Q n’est pas constant, alors degpP ˝ Qq “ degP ˆ degQ.

Définition-théorème 21 – Composition des polynômes

Démonstration. Supposons Q non constant et posons m “ degP . Par produit, deg
`

Qk
˘

“ k degQ, pour tout k P J0 ,mK. Ainsi,
puisque degQ ě 1, la suite

`

deg
`

Qk
˘˘

0ďkďm
est strictement croissante. Finalement, par somme,

degpP ˝ Qq “ deg

˜

m
ÿ

k“0

akQ
k

¸

“
am‰0

degpQm
q “ mdegQ.

■

Remarque 22
• Si Q est constant, i.e. un élément de K, on peut avoir P ˝ Q “ 0, i.e. Q est une racine de P , avec PQ ‰ 0,

auquel cas l’égalité degpP ˝ Qq “ degP ˆ degQ n’est pas vérifiée.

• Comme pour les puissances d’un nombre, pour tout Q P KrXs, Q0 “ 1, on a donc pour P “

n
ÿ

k“0

akX
k :

P ˝ Q “ anQ
n ` an´1Q

n´1 ` . . . ` a2Q
2 ` a1Q ` a0.

• Dans le cas particulier où Q “ X, le polynôme P pQq “ P pXq est égal à P , c’est pourquoi on utilise aussi bien
l’écriture P que P pXq pour désigner ce polynôme.

• On peut montrer sans difficulté que, pour tous λ, µ P K et P,Q,R P KrXs,

pλP ` µQq ˝ R “ λP ˝ R ` µQ ˝ R et pPQq ˝ R “ pP ˝ Rq ˆ pQ ˝ Rq.
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6 Anneau des polynômes à une indéterminée

Exemple 23
• Un polynôme P est dit pair lorsque P p´Xq “ P pXq.

Or si P “

`8
ÿ

k“0

akX
k, alors P p´Xq “

n
ÿ

k“0

p´1qkakX
k. Ainsi P est pair si et seulement si, pour tout k P N,

a2k`1 “ 0, i.e. si et seulement si P est combinaison linéaire de puissances paires de X.
• Similairement, un polynôme P est dit impair lorsque P p´Xq “ ´P pXq. Ainsi P est impair si et seulement s’il

est combinaison linéaire de puissances impaires de X.

Soit P “

`8
ÿ

k“0

akX
k P KrXs.

• Le polynôme
`8
ÿ

k“1

kakX
k´1 “

`8
ÿ

k“0

pk ` 1qak`1X
k est appelé le polynôme dérivé de P et noté P 1.

• On définit par récurrence, pour tout r P N, le re polynôme dérivé de P , noté P prq,
"

P p0q “ P,

@r P N, P pr`1q “
`

P prq
˘1
.

Pour r P t2, 3u, on préfère toutefois les notations P 2 et P3 à P p2q et P p3q.

Définition 24 – Dérivation des polynômes

La définition précédente est évidemment basée sur les propriétés bien connues de dérivation des fonctions poly-
nomiale sur R. Toutefois, il s’agit ici d’une définition purement formelle de la notion de dérivée, nullement adossée à
un concept de limite dans KrXs. En particulier, dans le contexte des polynômes formels, il est parfaitement hors de
propos de s’intéresser à la dérivabilité.

Exemple 25 Pour P “ 8X3 ´ 5X2 ` 3X ` 1, on a

P 1 “ 24X2 ´ 10X ` 3, P 2 “
`

P 1
˘1

“ 48X ´ 10, P3 “
`

P 2
˘1

“ 48, P p4q “
`

P3
˘1

“ 0

et donc P prq “ 0, pour tout r ě 4.

Exemple 26 Pour tous n P N et p P J0 , nK, pXnq
ppq

“ npn ´ 1q ¨ ¨ ¨ pn ´ p ` 1qXn´p “
n!

pn ´ pq!
Xn´p.

Les règles opératoires pour la dérivation des polynômes formels sont identiques à celles pour les fonctions dérivables !

Soit P,Q P KrXs, λ, µ P K et r P N.

(i) Degré.
"

deg
`

P prq
˘

“ degP ´ r si r ď degP,

P prq “ 0 sinon.
En particulier, P est constant si et seulement si P 1 “ 0.

(ii) Linéarité. pλP ` µQqprq “ λP prq ` µQprq.
(iii) Produit. pPQq1 “ P 1Q ` PQ1 et plus généralement

pPQqprq “

r
ÿ

k“0

ˆ

r

k

˙

P pkqQpr´kq (formule de Leibniz †).

(iv) Composition. pP ˝ Qq1 “ Q1 ˆ P 1 ˝ Q.

Théorème 27 – Propriétés de la dérivation des polynômes

Démonstration. ... ■

Remarque 28 À l’instar des fonctions, la formule de dérivation d’un produit se généralise à un produit d’un nombre
fini quelconque de facteurs :

@P1, . . . , Pn P KrXs,

˜

n
ź

i“1

Pi

¸1

“

n
ÿ

i“1

P 1
i

ź

j‰i

Pj .

Attention ! La relation degP 1 “ degP ´ 1 est fausse pour un polynôme P constant.

†. Gottfried Wilhelm Leibniz (1646 à Leipzig – 1716 Hanovre), est un philosophe, scientifique, mathématicien, logicien, diplomate,
juriste, bibliothécaire et philologue allemand. On lui attribue généralement, avec Isaac Newton, l’invention du calcul infinitésimal.
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Exercice 29 Pour tous n P N et p P J0 , nK, ppaX ` bq
n

q
ppq

“ ap
n!

pn ´ pq!
paX ` bq

n´p.

Soit P “

`8
ÿ

k“0

akX
k un élément de CrXs.

• Définition. On appelle conjugué de P , noté P , le polynôme P “

`8
ÿ

k“0

akX
k.

• Propriétés. Pour tous P,Q P CrXs, on a l’équivalence P P RrXs ðñ P “ P , et les relations

P ` Q “ P ` Q, PQ “ P Q, P ˝ Q “ P ˝ Q, P 1 “
`

P
˘1

et degP “ degP.

Définition-théorème 30 – Conjugaison des polynômes à coefficients complexes

Démonstration. Exercice (conséquences directes de la définition et des propriétés de la conjugaison dans C). ■

4 Évaluation d’un polynôme

4.1 Fonction polynomiale associée

Soit P “

`8
ÿ

k“0

akX
k un élément de KrXs.

• Pour tout α P K, on définit P pαq “

`8
ÿ

k“0

akα
k, qui est un élément de K appelé évaluation de P en α.

• La fonction α ÞÝÑ P pαq de K dans K est appelée la fonction polynomiale associée à P .
On la note souvent P par abus† et parfois rP lorsque l’on veut la distinguer rigoureusement du polynôme P .

• Pour tous P,Q P KrXs et λ, µ P K, ČλP ` µQ “ λ rP ` µ rQ, ĄPQ “ rP rQ et ČP ˝ Q “ rP ˝ rQ.

• Pour tous P P RrXs, ĂP 1 “
`

rP
˘1. • Pour tous P P CrXs et α P C, P pαq “ P pαq.

Définition-théorème 31 – Évaluation polynomiale, fonction polynomiale associée

Démonstration. Admis (exercice). ■

Les résultats des deux derniers points n’ont rien d’évidents a priori. Nous disposons sur RrXs et RR de notions
différentes d’addition, multiplication, composition et dérivation. Par exemple, dans la formule « ĂP 1 “

`

rP
˘1 », la

dérivée P 1 est une dérivée formelle (celle de la définition 24), alors que la dérivée
`

rP
˘1 est la dérivée d’une fonction

définie comme limite d’un taux d’accroissement.

Attention ! X n’est pas un nombre !
On ne dit pas « Posons X “ α », mais « Évaluons en α » ou « Substituons X par α ».

Remarque 32 Puisque r1 est la fonction constante x ÞÝÑ 1, i.e. le neutre pour la multiplicaton de l’anneau KK,
l’application P ÞÝÑ rP s’avère être un morphisme d’anneaux de KrXs dans KK.

Remarque 33 – Algorithme de Horner L’algorithme de Horner ‡ permet de calculer l’évaluation en α d’un

polynôme P “

n
ÿ

k“0

akX
k de degré n pour un coût de n additions et n multiplications dans K (l’algorithme naïf

nécessitant 2n multiplications), en remarquant que

P pαq “ a0 ` αpa1 ` αpa2 ` . . . ` αpan´2 ` αpan´1 ` αanqq . . .qq.

Soit l’algorithme simple suivant : • S Ð an ;
• Pour k allant de n ´ 1 à 0 par pas de ´1 : S Ð ak ` α ˚ S.

†. Cette identification sera justifiée au chapitre 17.
‡. William George Horner (1786 à Bristol – 1837 à Bath) est un mathématicien britannique connu pour ladite méthode. À vrai dire,
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Pour tout P P KrXs et α P K,

P “

`8
ÿ

k“0

P pkqpαq

k!
pX ´ αqk.

En particulier, pour tout k P N, le coefficient de degré k de P est
P pkqp0q

k!
.

Théorème 34 – Formule de Taylor§ polynomiale

Démonstration. ... ■

Remarque 35 Malgré les apparences, la somme
`8
ÿ

k“0

P pkqpαq

k!
pX´αqk est finie, puisque P pkq est nul dès que k ą degP .

4.2 Polynôme annulateur d’une matrice carrée
La structure d’anneau de l’ensemble MnpKq permet d’évaluer un polynôme à coefficients dans K en une matrice

carrée à coefficients dans K. Précisément, pour tous P “

`8
ÿ

k“0

akX
k P KrXs et A P MnpKq, on pose

P pAq “

`8
ÿ

k“0

akA
k “ apA

p ` ap´1A
p´1 ` . . . ` a1A ` a0In,

pour tout p ą degP . On vérifie alors sans difficulté, pour tous P,Q P KrXs, λ, µ P K et A P MnpKq, les propriétés
suivantes :

pλP ` µQqpAq “ λP pAq ` µQpAq et pPQqpAq “ P pAqQpAq “ QpAqP pAq.

Soit A P MnpKq. Un polynôme P P KrXs est appelé un polynôme annulateur de la matrice A lorsque P pAq “ 0n.
Définition 36 – Polynôme annulateur d’une matrice carrée

Remarque 37 Un polynôme annulateur non trivial (i.e. non nul) est de degré strictement positif.

Exemple 38 Le polynôme X3 ´ X2 ´ X ´ 1 annule la matrice A “

¨

˝

1 1 1
1 0 0
0 1 0

˛

‚.

En effet, il suffit de vérifier que A3
´ A2

´ A ´ I3 “ 03.

Exemple 39 Pour tout A P M2pKq, X2 ´ trpAqX ` detpAq est un polynôme annulateur de A.

Soit A P MnpKq. Si A possède un polynôme annulateur de coefficient constant non nul, alors A est inversible.
Théorème 40 – Polynômes annulateurs et matrice inversible

Démonstration. ... ■

Exemple 41 La matrice A de l’exemple 38 est inversible d’inverse A2 ´ A ´ I3.
En effet, étant annulée par X3

´ X2
´ X ´ 1, on a A

`

A2
´ A ´ I3

˘

“ A3
´ A2

´ A “ I3.

celle-ci était déjà employée par Isaac Newton 150 ans plus tôt et avait été exposée dès le 14e siècle par le mathématicien chinois Zhū Shìjié
(le fan fa).

§. Brook Taylor (1685 à Edmonton – 1731 à Londres) est un mathématicien anglais à l’origine des développements qui portent aujourd’hui
son nom et de la formule d’intégration par partie.
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Compétences à acquérir
• Utiliser la formule donnant les coefficients d’un produit de polynôme : exercices 2 et 5.
• Déterminer le degré d’un polynôme : exercices 3, 4 et 12.
• Manipuler les compositions de polynôme : exercice 9.
• Manipuler les dérivées de polynômes : exercices 7 à 9.

Quelques résultats classiques :
• Une formule de Vandermonde (application 10).
• Algorithme de Horner (remarque 33).
• Polynôme annulateur d’une matrice carrée de taille 2 (exemple 39).
• Degré du polynôme P pX ` 1q ´ P pXq (exercice 4).
• Polynômes de Tchebychev (exercice 12, questions 1 et 3).
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